Description: A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subgngp.h | |
|
Assertion | subgngp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgngp.h | |
|
2 | 1 | subggrp | |
3 | 2 | adantl | |
4 | ngpms | |
|
5 | ressms | |
|
6 | 4 5 | sylan | |
7 | 1 6 | eqeltrid | |
8 | simplr | |
|
9 | simprl | |
|
10 | 1 | subgbas | |
11 | 10 | ad2antlr | |
12 | 9 11 | eleqtrrd | |
13 | simprr | |
|
14 | 13 11 | eleqtrrd | |
15 | eqid | |
|
16 | eqid | |
|
17 | 15 1 16 | subgsub | |
18 | 8 12 14 17 | syl3anc | |
19 | 18 | fveq2d | |
20 | eqid | |
|
21 | 1 20 | ressds | |
22 | 21 | ad2antlr | |
23 | 22 | oveqd | |
24 | simpll | |
|
25 | eqid | |
|
26 | 25 | subgss | |
27 | 26 | ad2antlr | |
28 | 27 12 | sseldd | |
29 | 27 14 | sseldd | |
30 | eqid | |
|
31 | 30 25 15 20 | ngpds | |
32 | 24 28 29 31 | syl3anc | |
33 | 23 32 | eqtr3d | |
34 | eqid | |
|
35 | 34 16 | grpsubcl | |
36 | 35 | 3expb | |
37 | 3 36 | sylan | |
38 | 37 11 | eleqtrrd | |
39 | eqid | |
|
40 | 1 30 39 | subgnm2 | |
41 | 8 38 40 | syl2anc | |
42 | 19 33 41 | 3eqtr4d | |
43 | 42 | ralrimivva | |
44 | eqid | |
|
45 | 39 16 44 34 | isngp3 | |
46 | 3 7 43 45 | syl3anbrc | |