Metamath Proof Explorer


Theorem subgngp

Description: A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypothesis subgngp.h H = G 𝑠 A
Assertion subgngp G NrmGrp A SubGrp G H NrmGrp

Proof

Step Hyp Ref Expression
1 subgngp.h H = G 𝑠 A
2 1 subggrp A SubGrp G H Grp
3 2 adantl G NrmGrp A SubGrp G H Grp
4 ngpms G NrmGrp G MetSp
5 ressms G MetSp A SubGrp G G 𝑠 A MetSp
6 4 5 sylan G NrmGrp A SubGrp G G 𝑠 A MetSp
7 1 6 eqeltrid G NrmGrp A SubGrp G H MetSp
8 simplr G NrmGrp A SubGrp G x Base H y Base H A SubGrp G
9 simprl G NrmGrp A SubGrp G x Base H y Base H x Base H
10 1 subgbas A SubGrp G A = Base H
11 10 ad2antlr G NrmGrp A SubGrp G x Base H y Base H A = Base H
12 9 11 eleqtrrd G NrmGrp A SubGrp G x Base H y Base H x A
13 simprr G NrmGrp A SubGrp G x Base H y Base H y Base H
14 13 11 eleqtrrd G NrmGrp A SubGrp G x Base H y Base H y A
15 eqid - G = - G
16 eqid - H = - H
17 15 1 16 subgsub A SubGrp G x A y A x - G y = x - H y
18 8 12 14 17 syl3anc G NrmGrp A SubGrp G x Base H y Base H x - G y = x - H y
19 18 fveq2d G NrmGrp A SubGrp G x Base H y Base H norm G x - G y = norm G x - H y
20 eqid dist G = dist G
21 1 20 ressds A SubGrp G dist G = dist H
22 21 ad2antlr G NrmGrp A SubGrp G x Base H y Base H dist G = dist H
23 22 oveqd G NrmGrp A SubGrp G x Base H y Base H x dist G y = x dist H y
24 simpll G NrmGrp A SubGrp G x Base H y Base H G NrmGrp
25 eqid Base G = Base G
26 25 subgss A SubGrp G A Base G
27 26 ad2antlr G NrmGrp A SubGrp G x Base H y Base H A Base G
28 27 12 sseldd G NrmGrp A SubGrp G x Base H y Base H x Base G
29 27 14 sseldd G NrmGrp A SubGrp G x Base H y Base H y Base G
30 eqid norm G = norm G
31 30 25 15 20 ngpds G NrmGrp x Base G y Base G x dist G y = norm G x - G y
32 24 28 29 31 syl3anc G NrmGrp A SubGrp G x Base H y Base H x dist G y = norm G x - G y
33 23 32 eqtr3d G NrmGrp A SubGrp G x Base H y Base H x dist H y = norm G x - G y
34 eqid Base H = Base H
35 34 16 grpsubcl H Grp x Base H y Base H x - H y Base H
36 35 3expb H Grp x Base H y Base H x - H y Base H
37 3 36 sylan G NrmGrp A SubGrp G x Base H y Base H x - H y Base H
38 37 11 eleqtrrd G NrmGrp A SubGrp G x Base H y Base H x - H y A
39 eqid norm H = norm H
40 1 30 39 subgnm2 A SubGrp G x - H y A norm H x - H y = norm G x - H y
41 8 38 40 syl2anc G NrmGrp A SubGrp G x Base H y Base H norm H x - H y = norm G x - H y
42 19 33 41 3eqtr4d G NrmGrp A SubGrp G x Base H y Base H x dist H y = norm H x - H y
43 42 ralrimivva G NrmGrp A SubGrp G x Base H y Base H x dist H y = norm H x - H y
44 eqid dist H = dist H
45 39 16 44 34 isngp3 H NrmGrp H Grp H MetSp x Base H y Base H x dist H y = norm H x - H y
46 3 7 43 45 syl3anbrc G NrmGrp A SubGrp G H NrmGrp