Metamath Proof Explorer


Theorem subgngp

Description: A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypothesis subgngp.h H=G𝑠A
Assertion subgngp GNrmGrpASubGrpGHNrmGrp

Proof

Step Hyp Ref Expression
1 subgngp.h H=G𝑠A
2 1 subggrp ASubGrpGHGrp
3 2 adantl GNrmGrpASubGrpGHGrp
4 ngpms GNrmGrpGMetSp
5 ressms GMetSpASubGrpGG𝑠AMetSp
6 4 5 sylan GNrmGrpASubGrpGG𝑠AMetSp
7 1 6 eqeltrid GNrmGrpASubGrpGHMetSp
8 simplr GNrmGrpASubGrpGxBaseHyBaseHASubGrpG
9 simprl GNrmGrpASubGrpGxBaseHyBaseHxBaseH
10 1 subgbas ASubGrpGA=BaseH
11 10 ad2antlr GNrmGrpASubGrpGxBaseHyBaseHA=BaseH
12 9 11 eleqtrrd GNrmGrpASubGrpGxBaseHyBaseHxA
13 simprr GNrmGrpASubGrpGxBaseHyBaseHyBaseH
14 13 11 eleqtrrd GNrmGrpASubGrpGxBaseHyBaseHyA
15 eqid -G=-G
16 eqid -H=-H
17 15 1 16 subgsub ASubGrpGxAyAx-Gy=x-Hy
18 8 12 14 17 syl3anc GNrmGrpASubGrpGxBaseHyBaseHx-Gy=x-Hy
19 18 fveq2d GNrmGrpASubGrpGxBaseHyBaseHnormGx-Gy=normGx-Hy
20 eqid distG=distG
21 1 20 ressds ASubGrpGdistG=distH
22 21 ad2antlr GNrmGrpASubGrpGxBaseHyBaseHdistG=distH
23 22 oveqd GNrmGrpASubGrpGxBaseHyBaseHxdistGy=xdistHy
24 simpll GNrmGrpASubGrpGxBaseHyBaseHGNrmGrp
25 eqid BaseG=BaseG
26 25 subgss ASubGrpGABaseG
27 26 ad2antlr GNrmGrpASubGrpGxBaseHyBaseHABaseG
28 27 12 sseldd GNrmGrpASubGrpGxBaseHyBaseHxBaseG
29 27 14 sseldd GNrmGrpASubGrpGxBaseHyBaseHyBaseG
30 eqid normG=normG
31 30 25 15 20 ngpds GNrmGrpxBaseGyBaseGxdistGy=normGx-Gy
32 24 28 29 31 syl3anc GNrmGrpASubGrpGxBaseHyBaseHxdistGy=normGx-Gy
33 23 32 eqtr3d GNrmGrpASubGrpGxBaseHyBaseHxdistHy=normGx-Gy
34 eqid BaseH=BaseH
35 34 16 grpsubcl HGrpxBaseHyBaseHx-HyBaseH
36 35 3expb HGrpxBaseHyBaseHx-HyBaseH
37 3 36 sylan GNrmGrpASubGrpGxBaseHyBaseHx-HyBaseH
38 37 11 eleqtrrd GNrmGrpASubGrpGxBaseHyBaseHx-HyA
39 eqid normH=normH
40 1 30 39 subgnm2 ASubGrpGx-HyAnormHx-Hy=normGx-Hy
41 8 38 40 syl2anc GNrmGrpASubGrpGxBaseHyBaseHnormHx-Hy=normGx-Hy
42 19 33 41 3eqtr4d GNrmGrpASubGrpGxBaseHyBaseHxdistHy=normHx-Hy
43 42 ralrimivva GNrmGrpASubGrpGxBaseHyBaseHxdistHy=normHx-Hy
44 eqid distH=distH
45 39 16 44 34 isngp3 HNrmGrpHGrpHMetSpxBaseHyBaseHxdistHy=normHx-Hy
46 3 7 43 45 syl3anbrc GNrmGrpASubGrpGHNrmGrp