Metamath Proof Explorer


Theorem sumeq2ii

Description: Equality theorem for sum, with the class expressions B and C guarded by _I to be always sets. (Contributed by Mario Carneiro, 13-Jun-2019)

Ref Expression
Assertion sumeq2ii kAIB=ICkAB=kAC

Proof

Step Hyp Ref Expression
1 simpr kAIB=ICmm
2 simpr kAIB=ICmxmnAnA
3 simplll kAIB=ICmxmnAkAIB=IC
4 nfcv _kI
5 nfcsb1v _kn/kB
6 4 5 nffv _kIn/kB
7 nfcsb1v _kn/kC
8 4 7 nffv _kIn/kC
9 6 8 nfeq kIn/kB=In/kC
10 csbeq1a k=nB=n/kB
11 10 fveq2d k=nIB=In/kB
12 csbeq1a k=nC=n/kC
13 12 fveq2d k=nIC=In/kC
14 11 13 eqeq12d k=nIB=ICIn/kB=In/kC
15 9 14 rspc nAkAIB=ICIn/kB=In/kC
16 2 3 15 sylc kAIB=ICmxmnAIn/kB=In/kC
17 16 ifeq1da kAIB=ICmxmifnAIn/kBI0=ifnAIn/kCI0
18 fvif IifnAn/kB0=ifnAIn/kBI0
19 fvif IifnAn/kC0=ifnAIn/kCI0
20 17 18 19 3eqtr4g kAIB=ICmxmIifnAn/kB0=IifnAn/kC0
21 20 mpteq2dv kAIB=ICmxmnIifnAn/kB0=nIifnAn/kC0
22 21 fveq1d kAIB=ICmxmnIifnAn/kB0x=nIifnAn/kC0x
23 eqid nifnAn/kB0=nifnAn/kB0
24 eqid nIifnAn/kB0=nIifnAn/kB0
25 23 24 fvmptex nifnAn/kB0x=nIifnAn/kB0x
26 eqid nifnAn/kC0=nifnAn/kC0
27 eqid nIifnAn/kC0=nIifnAn/kC0
28 26 27 fvmptex nifnAn/kC0x=nIifnAn/kC0x
29 22 25 28 3eqtr4g kAIB=ICmxmnifnAn/kB0x=nifnAn/kC0x
30 1 29 seqfeq kAIB=ICmseqm+nifnAn/kB0=seqm+nifnAn/kC0
31 30 breq1d kAIB=ICmseqm+nifnAn/kB0xseqm+nifnAn/kC0x
32 31 anbi2d kAIB=ICmAmseqm+nifnAn/kB0xAmseqm+nifnAn/kC0x
33 32 rexbidva kAIB=ICmAmseqm+nifnAn/kB0xmAmseqm+nifnAn/kC0x
34 simplr kAIB=ICmf:1m1-1 ontoAm
35 nnuz =1
36 34 35 eleqtrdi kAIB=ICmf:1m1-1 ontoAm1
37 f1of f:1m1-1 ontoAf:1mA
38 37 ad2antlr kAIB=ICmf:1m1-1 ontoAx1mf:1mA
39 ffvelcdm f:1mAx1mfxA
40 38 39 sylancom kAIB=ICmf:1m1-1 ontoAx1mfxA
41 simplll kAIB=ICmf:1m1-1 ontoAx1mkAIB=IC
42 nfcsb1v _kfx/kIB
43 nfcsb1v _kfx/kIC
44 42 43 nfeq kfx/kIB=fx/kIC
45 csbeq1a k=fxIB=fx/kIB
46 csbeq1a k=fxIC=fx/kIC
47 45 46 eqeq12d k=fxIB=ICfx/kIB=fx/kIC
48 44 47 rspc fxAkAIB=ICfx/kIB=fx/kIC
49 40 41 48 sylc kAIB=ICmf:1m1-1 ontoAx1mfx/kIB=fx/kIC
50 fvex fxV
51 csbfv2g fxVfx/kIB=Ifx/kB
52 50 51 ax-mp fx/kIB=Ifx/kB
53 csbfv2g fxVfx/kIC=Ifx/kC
54 50 53 ax-mp fx/kIC=Ifx/kC
55 49 52 54 3eqtr3g kAIB=ICmf:1m1-1 ontoAx1mIfx/kB=Ifx/kC
56 elfznn x1mx
57 56 adantl kAIB=ICmf:1m1-1 ontoAx1mx
58 fveq2 n=xfn=fx
59 58 csbeq1d n=xfn/kB=fx/kB
60 eqid nfn/kB=nfn/kB
61 59 60 fvmpti xnfn/kBx=Ifx/kB
62 57 61 syl kAIB=ICmf:1m1-1 ontoAx1mnfn/kBx=Ifx/kB
63 58 csbeq1d n=xfn/kC=fx/kC
64 eqid nfn/kC=nfn/kC
65 63 64 fvmpti xnfn/kCx=Ifx/kC
66 57 65 syl kAIB=ICmf:1m1-1 ontoAx1mnfn/kCx=Ifx/kC
67 55 62 66 3eqtr4d kAIB=ICmf:1m1-1 ontoAx1mnfn/kBx=nfn/kCx
68 36 67 seqfveq kAIB=ICmf:1m1-1 ontoAseq1+nfn/kBm=seq1+nfn/kCm
69 68 eqeq2d kAIB=ICmf:1m1-1 ontoAx=seq1+nfn/kBmx=seq1+nfn/kCm
70 69 pm5.32da kAIB=ICmf:1m1-1 ontoAx=seq1+nfn/kBmf:1m1-1 ontoAx=seq1+nfn/kCm
71 70 exbidv kAIB=ICmff:1m1-1 ontoAx=seq1+nfn/kBmff:1m1-1 ontoAx=seq1+nfn/kCm
72 71 rexbidva kAIB=ICmff:1m1-1 ontoAx=seq1+nfn/kBmmff:1m1-1 ontoAx=seq1+nfn/kCm
73 33 72 orbi12d kAIB=ICmAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBmmAmseqm+nifnAn/kC0xmff:1m1-1 ontoAx=seq1+nfn/kCm
74 73 iotabidv kAIB=ICιx|mAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm=ιx|mAmseqm+nifnAn/kC0xmff:1m1-1 ontoAx=seq1+nfn/kCm
75 df-sum kAB=ιx|mAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm
76 df-sum kAC=ιx|mAmseqm+nifnAn/kC0xmff:1m1-1 ontoAx=seq1+nfn/kCm
77 74 75 76 3eqtr4g kAIB=ICkAB=kAC