Metamath Proof Explorer


Theorem suppssfz

Description: Condition for a function over the nonnegative integers to have a support contained in a finite set of sequential integers. (Contributed by AV, 9-Oct-2019)

Ref Expression
Hypotheses suppssfz.z φZV
suppssfz.f φFB0
suppssfz.s φS0
suppssfz.b φx0S<xFx=Z
Assertion suppssfz φFsuppZ0S

Proof

Step Hyp Ref Expression
1 suppssfz.z φZV
2 suppssfz.f φFB0
3 suppssfz.s φS0
4 suppssfz.b φx0S<xFx=Z
5 elmapfn FB0FFn0
6 2 5 syl φFFn0
7 nn0ex 0V
8 7 a1i φ0V
9 6 8 1 3jca φFFn00VZV
10 9 adantr φx0S<xFx=ZFFn00VZV
11 elsuppfn FFn00VZVnsuppZFn0FnZ
12 10 11 syl φx0S<xFx=ZnsuppZFn0FnZ
13 breq2 x=nS<xS<n
14 fveqeq2 x=nFx=ZFn=Z
15 13 14 imbi12d x=nS<xFx=ZS<nFn=Z
16 15 rspcva n0x0S<xFx=ZS<nFn=Z
17 simplr φn0¬S<nn0
18 3 adantr φn0S0
19 18 adantr φn0¬S<nS0
20 nn0re n0n
21 nn0re S0S
22 3 21 syl φS
23 lenlt nSnS¬S<n
24 20 22 23 syl2anr φn0nS¬S<n
25 24 biimpar φn0¬S<nnS
26 elfz2nn0 n0Sn0S0nS
27 17 19 25 26 syl3anbrc φn0¬S<nn0S
28 27 a1d φn0¬S<nFnZn0S
29 28 ex φn0¬S<nFnZn0S
30 eqneqall Fn=ZFnZn0S
31 30 a1i φn0Fn=ZFnZn0S
32 29 31 jad φn0S<nFn=ZFnZn0S
33 32 com23 φn0FnZS<nFn=Zn0S
34 33 ex φn0FnZS<nFn=Zn0S
35 34 com14 S<nFn=Zn0FnZφn0S
36 16 35 syl n0x0S<xFx=Zn0FnZφn0S
37 36 ex n0x0S<xFx=Zn0FnZφn0S
38 37 pm2.43a n0x0S<xFx=ZFnZφn0S
39 38 com23 n0FnZx0S<xFx=Zφn0S
40 39 imp n0FnZx0S<xFx=Zφn0S
41 40 com13 φx0S<xFx=Zn0FnZn0S
42 41 imp φx0S<xFx=Zn0FnZn0S
43 12 42 sylbid φx0S<xFx=ZnsuppZFn0S
44 43 ssrdv φx0S<xFx=ZFsuppZ0S
45 4 44 mpdan φFsuppZ0S