Metamath Proof Explorer


Theorem suppssov1

Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses suppssov1.s φ x D A supp Y L
suppssov1.o φ v R Y O v = Z
suppssov1.a φ x D A V
suppssov1.b φ x D B R
suppssov1.y φ Y W
Assertion suppssov1 φ x D A O B supp Z L

Proof

Step Hyp Ref Expression
1 suppssov1.s φ x D A supp Y L
2 suppssov1.o φ v R Y O v = Z
3 suppssov1.a φ x D A V
4 suppssov1.b φ x D B R
5 suppssov1.y φ Y W
6 3 elexd φ x D A V
7 6 adantll D V Z V φ x D A V
8 7 adantr D V Z V φ x D A O B V Z A V
9 oveq2 v = B Y O v = Y O B
10 9 eqeq1d v = B Y O v = Z Y O B = Z
11 2 ralrimiva φ v R Y O v = Z
12 11 adantl D V Z V φ v R Y O v = Z
13 12 adantr D V Z V φ x D v R Y O v = Z
14 4 adantll D V Z V φ x D B R
15 10 13 14 rspcdva D V Z V φ x D Y O B = Z
16 oveq1 A = Y A O B = Y O B
17 16 eqeq1d A = Y A O B = Z Y O B = Z
18 15 17 syl5ibrcom D V Z V φ x D A = Y A O B = Z
19 18 necon3d D V Z V φ x D A O B Z A Y
20 eldifsni A O B V Z A O B Z
21 19 20 impel D V Z V φ x D A O B V Z A Y
22 eldifsn A V Y A V A Y
23 8 21 22 sylanbrc D V Z V φ x D A O B V Z A V Y
24 23 ex D V Z V φ x D A O B V Z A V Y
25 24 ss2rabdv D V Z V φ x D | A O B V Z x D | A V Y
26 eqid x D A O B = x D A O B
27 simpll D V Z V φ D V
28 simplr D V Z V φ Z V
29 26 27 28 mptsuppdifd D V Z V φ x D A O B supp Z = x D | A O B V Z
30 eqid x D A = x D A
31 5 adantl D V Z V φ Y W
32 30 27 31 mptsuppdifd D V Z V φ x D A supp Y = x D | A V Y
33 25 29 32 3sstr4d D V Z V φ x D A O B supp Z x D A supp Y
34 1 adantl D V Z V φ x D A supp Y L
35 33 34 sstrd D V Z V φ x D A O B supp Z L
36 35 ex D V Z V φ x D A O B supp Z L
37 mptexg D V x D A O B V
38 ovex A O B V
39 38 rgenw x D A O B V
40 dmmptg x D A O B V dom x D A O B = D
41 39 40 ax-mp dom x D A O B = D
42 dmexg x D A O B V dom x D A O B V
43 41 42 eqeltrrid x D A O B V D V
44 37 43 impbii D V x D A O B V
45 44 anbi1i D V Z V x D A O B V Z V
46 supp0prc ¬ x D A O B V Z V x D A O B supp Z =
47 45 46 sylnbi ¬ D V Z V x D A O B supp Z =
48 0ss L
49 47 48 eqsstrdi ¬ D V Z V x D A O B supp Z L
50 49 a1d ¬ D V Z V φ x D A O B supp Z L
51 36 50 pm2.61i φ x D A O B supp Z L