Description: The supremum of a nonempty bounded indexed set of reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suprleubrnmpt.x | |
|
suprleubrnmpt.a | |
||
suprleubrnmpt.b | |
||
suprleubrnmpt.e | |
||
suprleubrnmpt.c | |
||
Assertion | suprleubrnmpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suprleubrnmpt.x | |
|
2 | suprleubrnmpt.a | |
|
3 | suprleubrnmpt.b | |
|
4 | suprleubrnmpt.e | |
|
5 | suprleubrnmpt.c | |
|
6 | eqid | |
|
7 | 1 6 3 | rnmptssd | |
8 | 1 3 6 2 | rnmptn0 | |
9 | 1 4 | rnmptbdd | |
10 | suprleub | |
|
11 | 7 8 9 5 10 | syl31anc | |
12 | nfmpt1 | |
|
13 | 12 | nfrn | |
14 | nfv | |
|
15 | 13 14 | nfralw | |
16 | 1 15 | nfan | |
17 | simpr | |
|
18 | 6 | elrnmpt1 | |
19 | 17 3 18 | syl2anc | |
20 | 19 | adantlr | |
21 | simplr | |
|
22 | breq1 | |
|
23 | 22 | rspcva | |
24 | 20 21 23 | syl2anc | |
25 | 24 | ex | |
26 | 16 25 | ralrimi | |
27 | 26 | ex | |
28 | vex | |
|
29 | 6 | elrnmpt | |
30 | 28 29 | ax-mp | |
31 | 30 | biimpi | |
32 | 31 | adantl | |
33 | nfra1 | |
|
34 | rspa | |
|
35 | 22 | biimprcd | |
36 | 34 35 | syl | |
37 | 36 | ex | |
38 | 33 14 37 | rexlimd | |
39 | 38 | adantr | |
40 | 32 39 | mpd | |
41 | 40 | ralrimiva | |
42 | 41 | a1i | |
43 | 27 42 | impbid | |
44 | 11 43 | bitrd | |