Description: The supremum of a bounded-above set of integers is a member of the set. (Contributed by Paul Chapman, 21-Mar-2011) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | suprzcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssre | |
|
2 | sstr | |
|
3 | 1 2 | mpan2 | |
4 | suprcl | |
|
5 | 3 4 | syl3an1 | |
6 | 5 | ltm1d | |
7 | peano2rem | |
|
8 | 4 7 | syl | |
9 | suprlub | |
|
10 | 8 9 | mpdan | |
11 | 3 10 | syl3an1 | |
12 | 6 11 | mpbid | |
13 | simpl1 | |
|
14 | 13 | sselda | |
15 | 1 14 | sselid | |
16 | 5 | adantr | |
17 | 16 | adantr | |
18 | simprl | |
|
19 | 13 18 | sseldd | |
20 | zre | |
|
21 | 19 20 | syl | |
22 | peano2re | |
|
23 | 21 22 | syl | |
24 | 23 | adantr | |
25 | suprub | |
|
26 | 3 25 | syl3anl1 | |
27 | 26 | adantlr | |
28 | simprr | |
|
29 | 1red | |
|
30 | 16 29 21 | ltsubaddd | |
31 | 28 30 | mpbid | |
32 | 31 | adantr | |
33 | 15 17 24 27 32 | lelttrd | |
34 | 19 | adantr | |
35 | zleltp1 | |
|
36 | 14 34 35 | syl2anc | |
37 | 33 36 | mpbird | |
38 | 37 | ralrimiva | |
39 | suprleub | |
|
40 | 3 39 | syl3anl1 | |
41 | 21 40 | syldan | |
42 | 38 41 | mpbird | |
43 | suprub | |
|
44 | 3 43 | syl3anl1 | |
45 | 44 | adantrr | |
46 | 16 21 | letri3d | |
47 | 42 45 46 | mpbir2and | |
48 | 47 18 | eqeltrd | |
49 | 12 48 | rexlimddv | |