Metamath Proof Explorer


Theorem supsubc

Description: The supremum function distributes over subtraction in a sense similar to that in supaddc . (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses supsubc.a1 φ A
supsubc.a2 φ A
supsubc.a3 φ x y A y x
supsubc.b φ B
supsubc.c C = z | v A z = v B
Assertion supsubc φ sup A < B = sup C <

Proof

Step Hyp Ref Expression
1 supsubc.a1 φ A
2 supsubc.a2 φ A
3 supsubc.a3 φ x y A y x
4 supsubc.b φ B
5 supsubc.c C = z | v A z = v B
6 5 a1i φ C = z | v A z = v B
7 1 sselda φ v A v
8 7 recnd φ v A v
9 4 recnd φ B
10 9 adantr φ v A B
11 8 10 negsubd φ v A v + B = v B
12 11 eqcomd φ v A v B = v + B
13 12 eqeq2d φ v A z = v B z = v + B
14 13 rexbidva φ v A z = v B v A z = v + B
15 14 abbidv φ z | v A z = v B = z | v A z = v + B
16 eqidd φ z | v A z = v + B = z | v A z = v + B
17 6 15 16 3eqtrd φ C = z | v A z = v + B
18 17 supeq1d φ sup C < = sup z | v A z = v + B <
19 4 renegcld φ B
20 eqid z | v A z = v + B = z | v A z = v + B
21 1 2 3 19 20 supaddc φ sup A < + B = sup z | v A z = v + B <
22 21 eqcomd φ sup z | v A z = v + B < = sup A < + B
23 suprcl A A x y A y x sup A <
24 1 2 3 23 syl3anc φ sup A <
25 24 recnd φ sup A <
26 25 9 negsubd φ sup A < + B = sup A < B
27 18 22 26 3eqtrrd φ sup A < B = sup C <