Description: Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | swoer.1 | |
|
swoer.2 | |
||
swoer.3 | |
||
Assertion | swoer | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swoer.1 | |
|
2 | swoer.2 | |
|
3 | swoer.3 | |
|
4 | difss | |
|
5 | 1 4 | eqsstri | |
6 | relxp | |
|
7 | relss | |
|
8 | 5 6 7 | mp2 | |
9 | 8 | a1i | |
10 | simpr | |
|
11 | orcom | |
|
12 | 11 | a1i | |
13 | 12 | notbid | |
14 | 5 | ssbri | |
15 | 14 | adantl | |
16 | brxp | |
|
17 | 15 16 | sylib | |
18 | 1 | brdifun | |
19 | 17 18 | syl | |
20 | 17 | simprd | |
21 | 17 | simpld | |
22 | 1 | brdifun | |
23 | 20 21 22 | syl2anc | |
24 | 13 19 23 | 3bitr4d | |
25 | 10 24 | mpbid | |
26 | simprl | |
|
27 | 14 | ad2antrl | |
28 | 16 | simplbi | |
29 | 27 28 | syl | |
30 | 16 | simprbi | |
31 | 27 30 | syl | |
32 | 29 31 18 | syl2anc | |
33 | 26 32 | mpbid | |
34 | simprr | |
|
35 | 5 | brel | |
36 | 35 | simprd | |
37 | 34 36 | syl | |
38 | 1 | brdifun | |
39 | 31 37 38 | syl2anc | |
40 | 34 39 | mpbid | |
41 | simpl | |
|
42 | 3 | swopolem | |
43 | 41 29 37 31 42 | syl13anc | |
44 | 3 | swopolem | |
45 | 41 37 29 31 44 | syl13anc | |
46 | orcom | |
|
47 | 45 46 | syl6ibr | |
48 | 43 47 | orim12d | |
49 | or4 | |
|
50 | 48 49 | imbitrdi | |
51 | 33 40 50 | mtord | |
52 | 1 | brdifun | |
53 | 29 37 52 | syl2anc | |
54 | 51 53 | mpbird | |
55 | 2 3 | swopo | |
56 | poirr | |
|
57 | 55 56 | sylan | |
58 | pm1.2 | |
|
59 | 57 58 | nsyl | |
60 | simpr | |
|
61 | 1 | brdifun | |
62 | 60 60 61 | syl2anc | |
63 | 59 62 | mpbird | |
64 | 5 | ssbri | |
65 | brxp | |
|
66 | 65 | simplbi | |
67 | 64 66 | syl | |
68 | 67 | adantl | |
69 | 63 68 | impbida | |
70 | 9 25 54 69 | iserd | |