Metamath Proof Explorer


Theorem swoer

Description: Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses swoer.1 R=X×X<˙<˙-1
swoer.2 φyXzXy<˙z¬z<˙y
swoer.3 φxXyXzXx<˙yx<˙zz<˙y
Assertion swoer φRErX

Proof

Step Hyp Ref Expression
1 swoer.1 R=X×X<˙<˙-1
2 swoer.2 φyXzXy<˙z¬z<˙y
3 swoer.3 φxXyXzXx<˙yx<˙zz<˙y
4 difss X×X<˙<˙-1X×X
5 1 4 eqsstri RX×X
6 relxp RelX×X
7 relss RX×XRelX×XRelR
8 5 6 7 mp2 RelR
9 8 a1i φRelR
10 simpr φuRvuRv
11 orcom u<˙vv<˙uv<˙uu<˙v
12 11 a1i φuRvu<˙vv<˙uv<˙uu<˙v
13 12 notbid φuRv¬u<˙vv<˙u¬v<˙uu<˙v
14 5 ssbri uRvuX×Xv
15 14 adantl φuRvuX×Xv
16 brxp uX×XvuXvX
17 15 16 sylib φuRvuXvX
18 1 brdifun uXvXuRv¬u<˙vv<˙u
19 17 18 syl φuRvuRv¬u<˙vv<˙u
20 17 simprd φuRvvX
21 17 simpld φuRvuX
22 1 brdifun vXuXvRu¬v<˙uu<˙v
23 20 21 22 syl2anc φuRvvRu¬v<˙uu<˙v
24 13 19 23 3bitr4d φuRvuRvvRu
25 10 24 mpbid φuRvvRu
26 simprl φuRvvRwuRv
27 14 ad2antrl φuRvvRwuX×Xv
28 16 simplbi uX×XvuX
29 27 28 syl φuRvvRwuX
30 16 simprbi uX×XvvX
31 27 30 syl φuRvvRwvX
32 29 31 18 syl2anc φuRvvRwuRv¬u<˙vv<˙u
33 26 32 mpbid φuRvvRw¬u<˙vv<˙u
34 simprr φuRvvRwvRw
35 5 brel vRwvXwX
36 35 simprd vRwwX
37 34 36 syl φuRvvRwwX
38 1 brdifun vXwXvRw¬v<˙ww<˙v
39 31 37 38 syl2anc φuRvvRwvRw¬v<˙ww<˙v
40 34 39 mpbid φuRvvRw¬v<˙ww<˙v
41 simpl φuRvvRwφ
42 3 swopolem φuXwXvXu<˙wu<˙vv<˙w
43 41 29 37 31 42 syl13anc φuRvvRwu<˙wu<˙vv<˙w
44 3 swopolem φwXuXvXw<˙uw<˙vv<˙u
45 41 37 29 31 44 syl13anc φuRvvRww<˙uw<˙vv<˙u
46 orcom v<˙uw<˙vw<˙vv<˙u
47 45 46 syl6ibr φuRvvRww<˙uv<˙uw<˙v
48 43 47 orim12d φuRvvRwu<˙ww<˙uu<˙vv<˙wv<˙uw<˙v
49 or4 u<˙vv<˙wv<˙uw<˙vu<˙vv<˙uv<˙ww<˙v
50 48 49 imbitrdi φuRvvRwu<˙ww<˙uu<˙vv<˙uv<˙ww<˙v
51 33 40 50 mtord φuRvvRw¬u<˙ww<˙u
52 1 brdifun uXwXuRw¬u<˙ww<˙u
53 29 37 52 syl2anc φuRvvRwuRw¬u<˙ww<˙u
54 51 53 mpbird φuRvvRwuRw
55 2 3 swopo φ<˙PoX
56 poirr <˙PoXuX¬u<˙u
57 55 56 sylan φuX¬u<˙u
58 pm1.2 u<˙uu<˙uu<˙u
59 57 58 nsyl φuX¬u<˙uu<˙u
60 simpr φuXuX
61 1 brdifun uXuXuRu¬u<˙uu<˙u
62 60 60 61 syl2anc φuXuRu¬u<˙uu<˙u
63 59 62 mpbird φuXuRu
64 5 ssbri uRuuX×Xu
65 brxp uX×XuuXuX
66 65 simplbi uX×XuuX
67 64 66 syl uRuuX
68 67 adantl φuRuuX
69 63 68 impbida φuXuRu
70 9 25 54 69 iserd φRErX