Metamath Proof Explorer


Theorem swrdnnn0nd

Description: The value of a subword operation for arguments not being nonnegative integers is the empty set. (Contributed by AV, 2-Dec-2022)

Ref Expression
Assertion swrdnnn0nd SWordV¬F0L0SsubstrFL=

Proof

Step Hyp Ref Expression
1 ianor ¬F0L0¬F0¬L0
2 ianor ¬F0F¬F¬0F
3 elnn0z F0F0F
4 2 3 xchnxbir ¬F0¬F¬0F
5 ianor ¬L0L¬L¬0L
6 elnn0z L0L0L
7 5 6 xchnxbir ¬L0¬L¬0L
8 4 7 orbi12i ¬F0¬L0¬F¬0F¬L¬0L
9 or4 ¬F¬0F¬L¬0L¬F¬L¬0F¬0L
10 ianor ¬FL¬F¬L
11 10 bicomi ¬F¬L¬FL
12 11 orbi1i ¬F¬L¬0F¬0L¬FL¬0F¬0L
13 9 12 bitri ¬F¬0F¬L¬0L¬FL¬0F¬0L
14 8 13 bitri ¬F0¬L0¬FL¬0F¬0L
15 1 14 bitri ¬F0L0¬FL¬0F¬0L
16 swrdnznd ¬FLSsubstrFL=
17 16 a1d ¬FLSWordVSsubstrFL=
18 notnotb FL¬¬FL
19 zre FF
20 0red F0
21 19 20 jca FF0
22 21 3ad2ant2 SWordVFLF0
23 ltnle F0F<0¬0F
24 22 23 syl SWordVFLF<0¬0F
25 orc F<0F<0LF
26 24 25 syl6bir SWordVFL¬0FF<0LF
27 26 com12 ¬0FSWordVFLF<0LF
28 notnotb 0F¬¬0F
29 28 a1i SWordVFL0F¬¬0F
30 zre LL
31 0red L0
32 30 31 jca LL0
33 32 3ad2ant3 SWordVFLL0
34 ltnle L0L<0¬0L
35 33 34 syl SWordVFLL<0¬0L
36 29 35 anbi12d SWordVFL0FL<0¬¬0F¬0L
37 30 3ad2ant3 SWordVFLL
38 0red SWordVFL0
39 19 3ad2ant2 SWordVFLF
40 ltleletr L0FL<00FLF
41 37 38 39 40 syl3anc SWordVFLL<00FLF
42 olc LFF<0LF
43 41 42 syl6 SWordVFLL<00FF<0LF
44 43 ancomsd SWordVFL0FL<0F<0LF
45 36 44 sylbird SWordVFL¬¬0F¬0LF<0LF
46 45 com12 ¬¬0F¬0LSWordVFLF<0LF
47 27 46 jaoi3 ¬0F¬0LSWordVFLF<0LF
48 47 impcom SWordVFL¬0F¬0LF<0LF
49 48 orcd SWordVFL¬0F¬0LF<0LFS<L
50 df-3or F<0LFS<LF<0LFS<L
51 49 50 sylibr SWordVFL¬0F¬0LF<0LFS<L
52 swrdnd SWordVFLF<0LFS<LSsubstrFL=
53 52 imp SWordVFLF<0LFS<LSsubstrFL=
54 51 53 syldan SWordVFL¬0F¬0LSsubstrFL=
55 54 ex SWordVFL¬0F¬0LSsubstrFL=
56 55 3expb SWordVFL¬0F¬0LSsubstrFL=
57 56 expcom FLSWordV¬0F¬0LSsubstrFL=
58 57 com23 FL¬0F¬0LSWordVSsubstrFL=
59 18 58 sylbir ¬¬FL¬0F¬0LSWordVSsubstrFL=
60 59 imp ¬¬FL¬0F¬0LSWordVSsubstrFL=
61 17 60 jaoi3 ¬FL¬0F¬0LSWordVSsubstrFL=
62 15 61 sylbi ¬F0L0SWordVSsubstrFL=
63 62 impcom SWordV¬F0L0SsubstrFL=