Description: Lemma for sylow2a . An equivalence class of fixed points is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylow2a.x | |
|
sylow2a.m | |
||
sylow2a.p | |
||
sylow2a.f | |
||
sylow2a.y | |
||
sylow2a.z | |
||
sylow2a.r | |
||
Assertion | sylow2alem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow2a.x | |
|
2 | sylow2a.m | |
|
3 | sylow2a.p | |
|
4 | sylow2a.f | |
|
5 | sylow2a.y | |
|
6 | sylow2a.z | |
|
7 | sylow2a.r | |
|
8 | vex | |
|
9 | simpr | |
|
10 | elecg | |
|
11 | 8 9 10 | sylancr | |
12 | 7 | gaorb | |
13 | 12 | simp3bi | |
14 | oveq2 | |
|
15 | id | |
|
16 | 14 15 | eqeq12d | |
17 | 16 | ralbidv | |
18 | 17 6 | elrab2 | |
19 | 9 18 | sylib | |
20 | 19 | simprd | |
21 | oveq1 | |
|
22 | 21 | eqeq1d | |
23 | 22 | rspccva | |
24 | 20 23 | sylan | |
25 | eqeq1 | |
|
26 | 24 25 | syl5ibcom | |
27 | 26 | rexlimdva | |
28 | 13 27 | syl5 | |
29 | 11 28 | sylbid | |
30 | velsn | |
|
31 | 29 30 | syl6ibr | |
32 | 31 | ssrdv | |
33 | 7 1 | gaorber | |
34 | 2 33 | syl | |
35 | 34 | adantr | |
36 | 19 | simpld | |
37 | 35 36 | erref | |
38 | elecg | |
|
39 | 9 38 | sylancom | |
40 | 37 39 | mpbird | |
41 | 40 | snssd | |
42 | 32 41 | eqssd | |