Description: Two permutations X and Y commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 17-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgcom.g | |
|
symgcom.b | |
||
symgcom.x | |
||
symgcom.y | |
||
symgcom2.1 | |
||
Assertion | symgcom2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgcom.g | |
|
2 | symgcom.b | |
|
3 | symgcom.x | |
|
4 | symgcom.y | |
|
5 | symgcom2.1 | |
|
6 | 1 2 | symgbasf | |
7 | 3 6 | syl | |
8 | 7 | ffnd | |
9 | fnresi | |
|
10 | 9 | a1i | |
11 | difssd | |
|
12 | ssidd | |
|
13 | nfpconfp | |
|
14 | 8 13 | syl | |
15 | inres | |
|
16 | reli | |
|
17 | relin2 | |
|
18 | 16 17 | ax-mp | |
19 | 14 11 | eqsstrrd | |
20 | relssres | |
|
21 | 18 19 20 | sylancr | |
22 | 15 21 | eqtrid | |
23 | 22 | dmeqd | |
24 | 14 23 | eqtr4d | |
25 | 12 24 | sseqtrd | |
26 | fnreseql | |
|
27 | 26 | biimpar | |
28 | 8 10 11 25 27 | syl31anc | |
29 | 11 | resabs1d | |
30 | 28 29 | eqtrd | |
31 | 1 2 | symgbasf | |
32 | 4 31 | syl | |
33 | 32 | ffnd | |
34 | difss | |
|
35 | dmss | |
|
36 | 34 35 | ax-mp | |
37 | fdm | |
|
38 | 3 6 37 | 3syl | |
39 | 36 38 | sseqtrid | |
40 | reldisj | |
|
41 | 39 40 | syl | |
42 | 5 41 | mpbid | |
43 | nfpconfp | |
|
44 | 33 43 | syl | |
45 | 42 44 | sseqtrd | |
46 | inres | |
|
47 | relin2 | |
|
48 | 16 47 | ax-mp | |
49 | difssd | |
|
50 | 44 49 | eqsstrrd | |
51 | relssres | |
|
52 | 48 50 51 | sylancr | |
53 | 46 52 | eqtrid | |
54 | 53 | dmeqd | |
55 | 45 54 | sseqtrrd | |
56 | fnreseql | |
|
57 | 56 | biimpar | |
58 | 33 10 39 55 57 | syl31anc | |
59 | 39 | resabs1d | |
60 | 58 59 | eqtrd | |
61 | difin2 | |
|
62 | 39 61 | syl | |
63 | difid | |
|
64 | 62 63 | eqtr3di | |
65 | undif1 | |
|
66 | ssequn2 | |
|
67 | 39 66 | sylib | |
68 | 65 67 | eqtrid | |
69 | 1 2 3 4 30 60 64 68 | symgcom | |