Metamath Proof Explorer


Theorem symgfixelsi

Description: The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P=BaseSymGrpN
symgfixf.q Q=qP|qK=K
symgfixf.s S=BaseSymGrpNK
symgfixf.d D=NK
Assertion symgfixelsi KNFQFDS

Proof

Step Hyp Ref Expression
1 symgfixf.p P=BaseSymGrpN
2 symgfixf.q Q=qP|qK=K
3 symgfixf.s S=BaseSymGrpNK
4 symgfixf.d D=NK
5 1 2 symgfixelq FQFQF:N1-1 ontoNFK=K
6 f1of1 F:N1-1 ontoNF:N1-1N
7 6 ad2antrl KNF:N1-1 ontoNFK=KF:N1-1N
8 difssd KNF:N1-1 ontoNFK=KNKN
9 f1ores F:N1-1NNKNFNK:NK1-1 ontoFNK
10 7 8 9 syl2anc KNF:N1-1 ontoNFK=KFNK:NK1-1 ontoFNK
11 4 reseq2i FD=FNK
12 11 a1i KNF:N1-1 ontoNFK=KFD=FNK
13 4 a1i KNF:N1-1 ontoNFK=KD=NK
14 f1ofo F:N1-1 ontoNF:NontoN
15 foima F:NontoNFN=N
16 15 eqcomd F:NontoNN=FN
17 14 16 syl F:N1-1 ontoNN=FN
18 17 ad2antrl KNF:N1-1 ontoNFK=KN=FN
19 sneq K=FKK=FK
20 19 eqcoms FK=KK=FK
21 20 ad2antll KNF:N1-1 ontoNFK=KK=FK
22 f1ofn F:N1-1 ontoNFFnN
23 22 ad2antrl KNF:N1-1 ontoNFK=KFFnN
24 simpl KNF:N1-1 ontoNFK=KKN
25 fnsnfv FFnNKNFK=FK
26 23 24 25 syl2anc KNF:N1-1 ontoNFK=KFK=FK
27 21 26 eqtrd KNF:N1-1 ontoNFK=KK=FK
28 18 27 difeq12d KNF:N1-1 ontoNFK=KNK=FNFK
29 dff1o2 F:N1-1 ontoNFFnNFunF-1ranF=N
30 29 simp2bi F:N1-1 ontoNFunF-1
31 30 ad2antrl KNF:N1-1 ontoNFK=KFunF-1
32 imadif FunF-1FNK=FNFK
33 31 32 syl KNF:N1-1 ontoNFK=KFNK=FNFK
34 28 13 33 3eqtr4d KNF:N1-1 ontoNFK=KD=FNK
35 12 13 34 f1oeq123d KNF:N1-1 ontoNFK=KFD:D1-1 ontoDFNK:NK1-1 ontoFNK
36 10 35 mpbird KNF:N1-1 ontoNFK=KFD:D1-1 ontoD
37 36 ancoms F:N1-1 ontoNFK=KKNFD:D1-1 ontoD
38 1 2 3 4 symgfixels FQFDSFD:D1-1 ontoD
39 37 38 imbitrrid FQF:N1-1 ontoNFK=KKNFDS
40 39 expd FQF:N1-1 ontoNFK=KKNFDS
41 5 40 sylbid FQFQKNFDS
42 41 pm2.43i FQKNFDS
43 42 impcom KNFQFDS