Description: The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgfixf.p | |
|
symgfixf.q | |
||
symgfixf.s | |
||
symgfixf.d | |
||
Assertion | symgfixelsi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgfixf.p | |
|
2 | symgfixf.q | |
|
3 | symgfixf.s | |
|
4 | symgfixf.d | |
|
5 | 1 2 | symgfixelq | |
6 | f1of1 | |
|
7 | 6 | ad2antrl | |
8 | difssd | |
|
9 | f1ores | |
|
10 | 7 8 9 | syl2anc | |
11 | 4 | reseq2i | |
12 | 11 | a1i | |
13 | 4 | a1i | |
14 | f1ofo | |
|
15 | foima | |
|
16 | 15 | eqcomd | |
17 | 14 16 | syl | |
18 | 17 | ad2antrl | |
19 | sneq | |
|
20 | 19 | eqcoms | |
21 | 20 | ad2antll | |
22 | f1ofn | |
|
23 | 22 | ad2antrl | |
24 | simpl | |
|
25 | fnsnfv | |
|
26 | 23 24 25 | syl2anc | |
27 | 21 26 | eqtrd | |
28 | 18 27 | difeq12d | |
29 | dff1o2 | |
|
30 | 29 | simp2bi | |
31 | 30 | ad2antrl | |
32 | imadif | |
|
33 | 31 32 | syl | |
34 | 28 13 33 | 3eqtr4d | |
35 | 12 13 34 | f1oeq123d | |
36 | 10 35 | mpbird | |
37 | 36 | ancoms | |
38 | 1 2 3 4 | symgfixels | |
39 | 37 38 | imbitrrid | |
40 | 39 | expd | |
41 | 5 40 | sylbid | |
42 | 41 | pm2.43i | |
43 | 42 | impcom | |