Metamath Proof Explorer


Theorem tanatan

Description: The arctangent function is an inverse to tan . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion tanatan AdomarctantanarctanA=A

Proof

Step Hyp Ref Expression
1 atancl AdomarctanarctanA
2 2efiatan Adomarctane2iarctanA=2iA+i1
3 2 oveq1d Adomarctane2iarctanA+1=2iA+i-1+1
4 2mulicn 2i
5 4 a1i Adomarctan2i
6 atandm AdomarctanAAiAi
7 6 simp1bi AdomarctanA
8 ax-icn i
9 addcl AiA+i
10 7 8 9 sylancl AdomarctanA+i
11 subneg AiAi=A+i
12 7 8 11 sylancl AdomarctanAi=A+i
13 6 simp2bi AdomarctanAi
14 8 negcli i
15 subeq0 AiAi=0A=i
16 15 necon3bid AiAi0Ai
17 7 14 16 sylancl AdomarctanAi0Ai
18 13 17 mpbird AdomarctanAi0
19 12 18 eqnetrrd AdomarctanA+i0
20 5 10 19 divcld Adomarctan2iA+i
21 ax-1cn 1
22 npcan 2iA+i12iA+i-1+1=2iA+i
23 20 21 22 sylancl Adomarctan2iA+i-1+1=2iA+i
24 3 23 eqtrd Adomarctane2iarctanA+1=2iA+i
25 2muline0 2i0
26 25 a1i Adomarctan2i0
27 5 10 26 19 divne0d Adomarctan2iA+i0
28 24 27 eqnetrd Adomarctane2iarctanA+10
29 tanval3 arctanAe2iarctanA+10tanarctanA=e2iarctanA1ie2iarctanA+1
30 1 28 29 syl2anc AdomarctantanarctanA=e2iarctanA1ie2iarctanA+1
31 2 oveq1d Adomarctane2iarctanA1=2iA+i-1-1
32 21 a1i Adomarctan1
33 20 32 32 subsub4d Adomarctan2iA+i-1-1=2iA+i1+1
34 df-2 2=1+1
35 34 oveq2i 2iA+i2=2iA+i1+1
36 33 35 eqtr4di Adomarctan2iA+i-1-1=2iA+i2
37 31 36 eqtrd Adomarctane2iarctanA1=2iA+i2
38 2cn 2
39 mulcl 2A+i2A+i
40 38 10 39 sylancr Adomarctan2A+i
41 5 40 10 19 divsubdird Adomarctan2i2A+iA+i=2iA+i2A+iA+i
42 mulneg12 2A-2A=2A
43 38 7 42 sylancr Adomarctan-2A=2A
44 negsub iAi+A=iA
45 8 7 44 sylancr Adomarctani+A=iA
46 45 oveq1d Adomarctani+A-i=i-A-i
47 7 negcld AdomarctanA
48 pncan2 iAi+A-i=A
49 8 47 48 sylancr Adomarctani+A-i=A
50 8 a1i Adomarctani
51 50 7 50 subsub4d Adomarctani-A-i=iA+i
52 46 49 51 3eqtr3rd AdomarctaniA+i=A
53 52 oveq2d Adomarctan2iA+i=2A
54 38 a1i Adomarctan2
55 54 50 10 subdid Adomarctan2iA+i=2i2A+i
56 43 53 55 3eqtr2rd Adomarctan2i2A+i=-2A
57 56 oveq1d Adomarctan2i2A+iA+i=-2AA+i
58 54 10 19 divcan4d Adomarctan2A+iA+i=2
59 58 oveq2d Adomarctan2iA+i2A+iA+i=2iA+i2
60 41 57 59 3eqtr3d Adomarctan-2AA+i=2iA+i2
61 37 60 eqtr4d Adomarctane2iarctanA1=-2AA+i
62 24 oveq2d Adomarctanie2iarctanA+1=i2iA+i
63 8 38 8 mul12i i2i=2ii
64 ixi ii=1
65 64 oveq2i 2ii=2-1
66 21 negcli 1
67 38 mulm1i -12=2
68 66 38 67 mulcomli 2-1=2
69 63 65 68 3eqtri i2i=2
70 69 oveq1i i2iA+i=2A+i
71 50 5 10 19 divassd Adomarctani2iA+i=i2iA+i
72 70 71 eqtr3id Adomarctan2A+i=i2iA+i
73 62 72 eqtr4d Adomarctanie2iarctanA+1=2A+i
74 61 73 oveq12d Adomarctane2iarctanA1ie2iarctanA+1=-2AA+i2A+i
75 38 negcli 2
76 mulcl 2A-2A
77 75 7 76 sylancr Adomarctan-2A
78 75 a1i Adomarctan2
79 2ne0 20
80 38 79 negne0i 20
81 80 a1i Adomarctan20
82 77 78 10 81 19 divcan7d Adomarctan-2AA+i2A+i=-2A2
83 7 78 81 divcan3d Adomarctan-2A2=A
84 82 83 eqtrd Adomarctan-2AA+i2A+i=A
85 74 84 eqtrd Adomarctane2iarctanA1ie2iarctanA+1=A
86 30 85 eqtrd AdomarctantanarctanA=A