Metamath Proof Explorer


Theorem taylply

Description: The Taylor polynomial is a polynomial of degree (at most) N . (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Hypotheses taylpfval.s φS
taylpfval.f φF:A
taylpfval.a φAS
taylpfval.n φN0
taylpfval.b φBdomSDnFN
taylpfval.t T=NSTaylFB
Assertion taylply φTPolydegTN

Proof

Step Hyp Ref Expression
1 taylpfval.s φS
2 taylpfval.f φF:A
3 taylpfval.a φAS
4 taylpfval.n φN0
5 taylpfval.b φBdomSDnFN
6 taylpfval.t T=NSTaylFB
7 cnring fldRing
8 cnfldbas =Basefld
9 8 subrgid fldRingSubRingfld
10 7 9 mp1i φSubRingfld
11 cnex V
12 11 a1i φV
13 elpm2r VSF:AASF𝑝𝑚S
14 12 1 2 3 13 syl22anc φF𝑝𝑚S
15 dvnbss SF𝑝𝑚SN0domSDnFNdomF
16 1 14 4 15 syl3anc φdomSDnFNdomF
17 2 16 fssdmd φdomSDnFNA
18 recnprss SS
19 1 18 syl φS
20 3 19 sstrd φA
21 17 20 sstrd φdomSDnFN
22 21 5 sseldd φB
23 1 adantr φk0NS
24 14 adantr φk0NF𝑝𝑚S
25 elfznn0 k0Nk0
26 25 adantl φk0Nk0
27 dvnf SF𝑝𝑚Sk0SDnFk:domSDnFk
28 23 24 26 27 syl3anc φk0NSDnFk:domSDnFk
29 simpr φk0Nk0N
30 dvn2bss SF𝑝𝑚Sk0NdomSDnFNdomSDnFk
31 23 24 29 30 syl3anc φk0NdomSDnFNdomSDnFk
32 5 adantr φk0NBdomSDnFN
33 31 32 sseldd φk0NBdomSDnFk
34 28 33 ffvelcdmd φk0NSDnFkB
35 26 faccld φk0Nk!
36 35 nncnd φk0Nk!
37 35 nnne0d φk0Nk!0
38 34 36 37 divcld φk0NSDnFkBk!
39 1 2 3 4 5 6 10 22 38 taylply2 φTPolydegTN