| Step | Hyp | Ref | Expression | 
						
							| 1 |  | taylpfval.s |  | 
						
							| 2 |  | taylpfval.f |  | 
						
							| 3 |  | taylpfval.a |  | 
						
							| 4 |  | taylpfval.n |  | 
						
							| 5 |  | taylpfval.b |  | 
						
							| 6 |  | taylpfval.t |  | 
						
							| 7 |  | taylply2.1 |  | 
						
							| 8 |  | taylply2.2 |  | 
						
							| 9 |  | taylply2.3 |  | 
						
							| 10 | 1 2 3 4 5 6 | taylpfval |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 |  | cnex |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 |  | elpm2r |  | 
						
							| 15 | 13 1 2 3 14 | syl22anc |  | 
						
							| 16 |  | dvnbss |  | 
						
							| 17 | 1 15 4 16 | syl3anc |  | 
						
							| 18 | 2 17 | fssdmd |  | 
						
							| 19 |  | recnprss |  | 
						
							| 20 | 1 19 | syl |  | 
						
							| 21 | 3 20 | sstrd |  | 
						
							| 22 | 18 21 | sstrd |  | 
						
							| 23 | 22 5 | sseldd |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 11 24 | subcld |  | 
						
							| 26 |  | df-idp |  | 
						
							| 27 |  | mptresid |  | 
						
							| 28 | 26 27 | eqtri |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 |  | fconstmpt |  | 
						
							| 31 | 30 | a1i |  | 
						
							| 32 | 13 11 24 29 31 | offval2 |  | 
						
							| 33 |  | eqidd |  | 
						
							| 34 |  | oveq1 |  | 
						
							| 35 | 34 | oveq2d |  | 
						
							| 36 | 35 | sumeq2sdv |  | 
						
							| 37 | 25 32 33 36 | fmptco |  | 
						
							| 38 | 10 37 | eqtr4d |  | 
						
							| 39 |  | cnfldbas |  | 
						
							| 40 | 39 | subrgss |  | 
						
							| 41 | 7 40 | syl |  | 
						
							| 42 | 41 4 9 | elplyd |  | 
						
							| 43 |  | cnfld1 |  | 
						
							| 44 | 43 | subrg1cl |  | 
						
							| 45 | 7 44 | syl |  | 
						
							| 46 |  | plyid |  | 
						
							| 47 | 41 45 46 | syl2anc |  | 
						
							| 48 |  | plyconst |  | 
						
							| 49 | 41 8 48 | syl2anc |  | 
						
							| 50 |  | subrgsubg |  | 
						
							| 51 | 7 50 | syl |  | 
						
							| 52 |  | cnfldadd |  | 
						
							| 53 | 52 | subgcl |  | 
						
							| 54 | 53 | 3expb |  | 
						
							| 55 | 51 54 | sylan |  | 
						
							| 56 | 40 | sseld |  | 
						
							| 57 | 56 | a1dd |  | 
						
							| 58 | 57 | 3imp |  | 
						
							| 59 | 40 | sseld |  | 
						
							| 60 | 59 | a1d |  | 
						
							| 61 | 60 | 3imp |  | 
						
							| 62 |  | ovmpot |  | 
						
							| 63 | 58 61 62 | syl2anc |  | 
						
							| 64 |  | mpocnfldmul |  | 
						
							| 65 | 64 | subrgmcl |  | 
						
							| 66 | 63 65 | eqeltrrd |  | 
						
							| 67 | 66 | 3expb |  | 
						
							| 68 | 7 67 | sylan |  | 
						
							| 69 |  | ax-1cn |  | 
						
							| 70 |  | cnfldneg |  | 
						
							| 71 | 69 70 | ax-mp |  | 
						
							| 72 |  | eqid |  | 
						
							| 73 | 72 | subginvcl |  | 
						
							| 74 | 51 45 73 | syl2anc |  | 
						
							| 75 | 71 74 | eqeltrrid |  | 
						
							| 76 | 47 49 55 68 75 | plysub |  | 
						
							| 77 | 42 76 55 68 | plyco |  | 
						
							| 78 | 38 77 | eqeltrd |  | 
						
							| 79 | 38 | fveq2d |  | 
						
							| 80 |  | eqid |  | 
						
							| 81 |  | eqid |  | 
						
							| 82 | 80 81 42 76 | dgrco |  | 
						
							| 83 |  | eqid |  | 
						
							| 84 | 83 | plyremlem |  | 
						
							| 85 | 23 84 | syl |  | 
						
							| 86 | 85 | simp2d |  | 
						
							| 87 | 86 | oveq2d |  | 
						
							| 88 |  | dgrcl |  | 
						
							| 89 | 42 88 | syl |  | 
						
							| 90 | 89 | nn0cnd |  | 
						
							| 91 | 90 | mulridd |  | 
						
							| 92 | 87 91 | eqtrd |  | 
						
							| 93 | 79 82 92 | 3eqtrd |  | 
						
							| 94 |  | elfznn0 |  | 
						
							| 95 |  | dvnf |  | 
						
							| 96 | 1 15 94 95 | syl2an3an |  | 
						
							| 97 |  | id |  | 
						
							| 98 |  | dvn2bss |  | 
						
							| 99 | 1 15 97 98 | syl2an3an |  | 
						
							| 100 | 5 | adantr |  | 
						
							| 101 | 99 100 | sseldd |  | 
						
							| 102 | 96 101 | ffvelcdmd |  | 
						
							| 103 | 94 | adantl |  | 
						
							| 104 | 103 | faccld |  | 
						
							| 105 | 104 | nncnd |  | 
						
							| 106 | 104 | nnne0d |  | 
						
							| 107 | 102 105 106 | divcld |  | 
						
							| 108 | 42 4 107 33 | dgrle |  | 
						
							| 109 | 93 108 | eqbrtrd |  | 
						
							| 110 | 78 109 | jca |  |