Metamath Proof Explorer


Theorem telgsumfzs

Description: Telescoping group sum ranging over a finite set of sequential integers, using explicit substitution. (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses telgsumfzs.b B=BaseG
telgsumfzs.g φGAbel
telgsumfzs.m -˙=-G
telgsumfzs.n φNM
telgsumfzs.f φkMN+1CB
Assertion telgsumfzs φGi=MNi/kC-˙i+1/kC=M/kC-˙N+1/kC

Proof

Step Hyp Ref Expression
1 telgsumfzs.b B=BaseG
2 telgsumfzs.g φGAbel
3 telgsumfzs.m -˙=-G
4 telgsumfzs.n φNM
5 telgsumfzs.f φkMN+1CB
6 oveq1 x=Mx+1=M+1
7 6 oveq2d x=MMx+1=MM+1
8 7 raleqdv x=MkMx+1CBkMM+1CB
9 8 anbi2d x=MφkMx+1CBφkMM+1CB
10 oveq2 x=MMx=MM
11 10 mpteq1d x=MiMxi/kC-˙i+1/kC=iMMi/kC-˙i+1/kC
12 11 oveq2d x=MGi=Mxi/kC-˙i+1/kC=Gi=MMi/kC-˙i+1/kC
13 6 csbeq1d x=Mx+1/kC=M+1/kC
14 13 oveq2d x=MM/kC-˙x+1/kC=M/kC-˙M+1/kC
15 12 14 eqeq12d x=MGi=Mxi/kC-˙i+1/kC=M/kC-˙x+1/kCGi=MMi/kC-˙i+1/kC=M/kC-˙M+1/kC
16 9 15 imbi12d x=MφkMx+1CBGi=Mxi/kC-˙i+1/kC=M/kC-˙x+1/kCφkMM+1CBGi=MMi/kC-˙i+1/kC=M/kC-˙M+1/kC
17 oveq1 x=yx+1=y+1
18 17 oveq2d x=yMx+1=My+1
19 18 raleqdv x=ykMx+1CBkMy+1CB
20 19 anbi2d x=yφkMx+1CBφkMy+1CB
21 oveq2 x=yMx=My
22 21 mpteq1d x=yiMxi/kC-˙i+1/kC=iMyi/kC-˙i+1/kC
23 22 oveq2d x=yGi=Mxi/kC-˙i+1/kC=Gi=Myi/kC-˙i+1/kC
24 17 csbeq1d x=yx+1/kC=y+1/kC
25 24 oveq2d x=yM/kC-˙x+1/kC=M/kC-˙y+1/kC
26 23 25 eqeq12d x=yGi=Mxi/kC-˙i+1/kC=M/kC-˙x+1/kCGi=Myi/kC-˙i+1/kC=M/kC-˙y+1/kC
27 20 26 imbi12d x=yφkMx+1CBGi=Mxi/kC-˙i+1/kC=M/kC-˙x+1/kCφkMy+1CBGi=Myi/kC-˙i+1/kC=M/kC-˙y+1/kC
28 oveq1 x=y+1x+1=y+1+1
29 28 oveq2d x=y+1Mx+1=My+1+1
30 29 raleqdv x=y+1kMx+1CBkMy+1+1CB
31 30 anbi2d x=y+1φkMx+1CBφkMy+1+1CB
32 oveq2 x=y+1Mx=My+1
33 32 mpteq1d x=y+1iMxi/kC-˙i+1/kC=iMy+1i/kC-˙i+1/kC
34 33 oveq2d x=y+1Gi=Mxi/kC-˙i+1/kC=Gi=My+1i/kC-˙i+1/kC
35 28 csbeq1d x=y+1x+1/kC=y+1+1/kC
36 35 oveq2d x=y+1M/kC-˙x+1/kC=M/kC-˙y+1+1/kC
37 34 36 eqeq12d x=y+1Gi=Mxi/kC-˙i+1/kC=M/kC-˙x+1/kCGi=My+1i/kC-˙i+1/kC=M/kC-˙y+1+1/kC
38 31 37 imbi12d x=y+1φkMx+1CBGi=Mxi/kC-˙i+1/kC=M/kC-˙x+1/kCφkMy+1+1CBGi=My+1i/kC-˙i+1/kC=M/kC-˙y+1+1/kC
39 oveq1 x=Nx+1=N+1
40 39 oveq2d x=NMx+1=MN+1
41 40 raleqdv x=NkMx+1CBkMN+1CB
42 41 anbi2d x=NφkMx+1CBφkMN+1CB
43 oveq2 x=NMx=MN
44 43 mpteq1d x=NiMxi/kC-˙i+1/kC=iMNi/kC-˙i+1/kC
45 44 oveq2d x=NGi=Mxi/kC-˙i+1/kC=Gi=MNi/kC-˙i+1/kC
46 39 csbeq1d x=Nx+1/kC=N+1/kC
47 46 oveq2d x=NM/kC-˙x+1/kC=M/kC-˙N+1/kC
48 45 47 eqeq12d x=NGi=Mxi/kC-˙i+1/kC=M/kC-˙x+1/kCGi=MNi/kC-˙i+1/kC=M/kC-˙N+1/kC
49 42 48 imbi12d x=NφkMx+1CBGi=Mxi/kC-˙i+1/kC=M/kC-˙x+1/kCφkMN+1CBGi=MNi/kC-˙i+1/kC=M/kC-˙N+1/kC
50 eluzel2 NMM
51 4 50 syl φM
52 51 adantr φkMM+1CBM
53 fzsn MMM=M
54 52 53 syl φkMM+1CBMM=M
55 54 mpteq1d φkMM+1CBiMMi/kC-˙i+1/kC=iMi/kC-˙i+1/kC
56 55 oveq2d φkMM+1CBGi=MMi/kC-˙i+1/kC=GiMi/kC-˙i+1/kC
57 ablgrp GAbelGGrp
58 2 57 syl φGGrp
59 58 grpmndd φGMnd
60 59 adantr φkMM+1CBGMnd
61 58 adantr φkMM+1CBGGrp
62 uzid MMM
63 52 62 syl φkMM+1CBMM
64 peano2uz MMM+1M
65 63 64 syl φkMM+1CBM+1M
66 eluzfz1 M+1MMMM+1
67 65 66 syl φkMM+1CBMMM+1
68 rspcsbela MMM+1kMM+1CBM/kCB
69 67 68 sylancom φkMM+1CBM/kCB
70 eluzfz2 M+1MM+1MM+1
71 65 70 syl φkMM+1CBM+1MM+1
72 rspcsbela M+1MM+1kMM+1CBM+1/kCB
73 71 72 sylancom φkMM+1CBM+1/kCB
74 1 3 grpsubcl GGrpM/kCBM+1/kCBM/kC-˙M+1/kCB
75 61 69 73 74 syl3anc φkMM+1CBM/kC-˙M+1/kCB
76 csbeq1 i=Mi/kC=M/kC
77 oveq1 i=Mi+1=M+1
78 77 csbeq1d i=Mi+1/kC=M+1/kC
79 76 78 oveq12d i=Mi/kC-˙i+1/kC=M/kC-˙M+1/kC
80 79 adantl φkMM+1CBi=Mi/kC-˙i+1/kC=M/kC-˙M+1/kC
81 1 60 52 75 80 gsumsnd φkMM+1CBGiMi/kC-˙i+1/kC=M/kC-˙M+1/kC
82 56 81 eqtrd φkMM+1CBGi=MMi/kC-˙i+1/kC=M/kC-˙M+1/kC
83 1 2 3 telgsumfzslem yMφkMy+1+1CBGi=Myi/kC-˙i+1/kC=M/kC-˙y+1/kCGi=My+1i/kC-˙i+1/kC=M/kC-˙y+1+1/kC
84 83 ex yMφkMy+1+1CBGi=Myi/kC-˙i+1/kC=M/kC-˙y+1/kCGi=My+1i/kC-˙i+1/kC=M/kC-˙y+1+1/kC
85 eluzelz yMy
86 85 peano2zd yMy+1
87 86 peano2zd yMy+1+1
88 peano2z yy+1
89 88 zred yy+1
90 85 89 syl yMy+1
91 90 lep1d yMy+1y+1+1
92 eluz2 y+1+1y+1y+1y+1+1y+1y+1+1
93 86 87 91 92 syl3anbrc yMy+1+1y+1
94 fzss2 y+1+1y+1My+1My+1+1
95 93 94 syl yMMy+1My+1+1
96 ssralv My+1My+1+1kMy+1+1CBkMy+1CB
97 95 96 syl yMkMy+1+1CBkMy+1CB
98 97 adantld yMφkMy+1+1CBkMy+1CB
99 84 98 a2and yMφkMy+1CBGi=Myi/kC-˙i+1/kC=M/kC-˙y+1/kCφkMy+1+1CBGi=My+1i/kC-˙i+1/kC=M/kC-˙y+1+1/kC
100 16 27 38 49 82 99 uzind4i NMφkMN+1CBGi=MNi/kC-˙i+1/kC=M/kC-˙N+1/kC
101 100 expd NMφkMN+1CBGi=MNi/kC-˙i+1/kC=M/kC-˙N+1/kC
102 4 101 mpcom φkMN+1CBGi=MNi/kC-˙i+1/kC=M/kC-˙N+1/kC
103 5 102 mpd φGi=MNi/kC-˙i+1/kC=M/kC-˙N+1/kC