Description: Trace-preserving property of endomorphism sum operation P , based on Theorems trlco . Part of remark in Crawley p. 118, 2nd line, "it is clear from the second part of G (our trlco ) that Delta is a subring of E." (In our development, we will bypass their E and go directly to their Delta, whose base set is our ( TEndoK )W .) (Contributed by NM, 9-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tendopl.h | |
|
tendopl.t | |
||
tendopl.e | |
||
tendopl.p | |
||
tendopltp.l | |
||
tendopltp.r | |
||
Assertion | tendopltp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendopl.h | |
|
2 | tendopl.t | |
|
3 | tendopl.e | |
|
4 | tendopl.p | |
|
5 | tendopltp.l | |
|
6 | tendopltp.r | |
|
7 | eqid | |
|
8 | simp1l | |
|
9 | 8 | hllatd | |
10 | simp1 | |
|
11 | 1 2 3 4 | tendoplcl2 | |
12 | 7 1 2 6 | trlcl | |
13 | 10 11 12 | syl2anc | |
14 | 1 2 3 | tendocl | |
15 | 14 | 3adant2r | |
16 | 7 1 2 6 | trlcl | |
17 | 10 15 16 | syl2anc | |
18 | 1 2 3 | tendocl | |
19 | 18 | 3adant2l | |
20 | 7 1 2 6 | trlcl | |
21 | 10 19 20 | syl2anc | |
22 | eqid | |
|
23 | 7 22 | latjcl | |
24 | 9 17 21 23 | syl3anc | |
25 | simp3 | |
|
26 | 7 1 2 6 | trlcl | |
27 | 10 25 26 | syl2anc | |
28 | simp2l | |
|
29 | simp2r | |
|
30 | 4 2 | tendopl2 | |
31 | 28 29 25 30 | syl3anc | |
32 | 31 | fveq2d | |
33 | 5 22 1 2 6 | trlco | |
34 | 10 15 19 33 | syl3anc | |
35 | 32 34 | eqbrtrd | |
36 | 5 1 2 6 3 | tendotp | |
37 | 36 | 3adant2r | |
38 | 5 1 2 6 3 | tendotp | |
39 | 38 | 3adant2l | |
40 | 7 5 22 | latjle12 | |
41 | 9 17 21 27 40 | syl13anc | |
42 | 37 39 41 | mpbi2and | |
43 | 7 5 9 13 24 27 35 42 | lattrd | |