Metamath Proof Explorer


Theorem tendopltp

Description: Trace-preserving property of endomorphism sum operation P , based on Theorems trlco . Part of remark in Crawley p. 118, 2nd line, "it is clear from the second part of G (our trlco ) that Delta is a subring of E." (In our development, we will bypass their E and go directly to their Delta, whose base set is our ( TEndoK )W .) (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses tendopl.h H=LHypK
tendopl.t T=LTrnKW
tendopl.e E=TEndoKW
tendopl.p P=sE,tEfTsftf
tendopltp.l ˙=K
tendopltp.r R=trLKW
Assertion tendopltp KHLWHUEVEFTRUPVF˙RF

Proof

Step Hyp Ref Expression
1 tendopl.h H=LHypK
2 tendopl.t T=LTrnKW
3 tendopl.e E=TEndoKW
4 tendopl.p P=sE,tEfTsftf
5 tendopltp.l ˙=K
6 tendopltp.r R=trLKW
7 eqid BaseK=BaseK
8 simp1l KHLWHUEVEFTKHL
9 8 hllatd KHLWHUEVEFTKLat
10 simp1 KHLWHUEVEFTKHLWH
11 1 2 3 4 tendoplcl2 KHLWHUEVEFTUPVFT
12 7 1 2 6 trlcl KHLWHUPVFTRUPVFBaseK
13 10 11 12 syl2anc KHLWHUEVEFTRUPVFBaseK
14 1 2 3 tendocl KHLWHUEFTUFT
15 14 3adant2r KHLWHUEVEFTUFT
16 7 1 2 6 trlcl KHLWHUFTRUFBaseK
17 10 15 16 syl2anc KHLWHUEVEFTRUFBaseK
18 1 2 3 tendocl KHLWHVEFTVFT
19 18 3adant2l KHLWHUEVEFTVFT
20 7 1 2 6 trlcl KHLWHVFTRVFBaseK
21 10 19 20 syl2anc KHLWHUEVEFTRVFBaseK
22 eqid joinK=joinK
23 7 22 latjcl KLatRUFBaseKRVFBaseKRUFjoinKRVFBaseK
24 9 17 21 23 syl3anc KHLWHUEVEFTRUFjoinKRVFBaseK
25 simp3 KHLWHUEVEFTFT
26 7 1 2 6 trlcl KHLWHFTRFBaseK
27 10 25 26 syl2anc KHLWHUEVEFTRFBaseK
28 simp2l KHLWHUEVEFTUE
29 simp2r KHLWHUEVEFTVE
30 4 2 tendopl2 UEVEFTUPVF=UFVF
31 28 29 25 30 syl3anc KHLWHUEVEFTUPVF=UFVF
32 31 fveq2d KHLWHUEVEFTRUPVF=RUFVF
33 5 22 1 2 6 trlco KHLWHUFTVFTRUFVF˙RUFjoinKRVF
34 10 15 19 33 syl3anc KHLWHUEVEFTRUFVF˙RUFjoinKRVF
35 32 34 eqbrtrd KHLWHUEVEFTRUPVF˙RUFjoinKRVF
36 5 1 2 6 3 tendotp KHLWHUEFTRUF˙RF
37 36 3adant2r KHLWHUEVEFTRUF˙RF
38 5 1 2 6 3 tendotp KHLWHVEFTRVF˙RF
39 38 3adant2l KHLWHUEVEFTRVF˙RF
40 7 5 22 latjle12 KLatRUFBaseKRVFBaseKRFBaseKRUF˙RFRVF˙RFRUFjoinKRVF˙RF
41 9 17 21 27 40 syl13anc KHLWHUEVEFTRUF˙RFRVF˙RFRUFjoinKRVF˙RF
42 37 39 41 mpbi2and KHLWHUEVEFTRUFjoinKRVF˙RF
43 7 5 9 13 24 27 35 42 lattrd KHLWHUEVEFTRUPVF˙RF