Metamath Proof Explorer


Theorem tocycfv

Description: Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023)

Ref Expression
Hypotheses tocycval.1 C=toCycD
tocycfv.d φDV
tocycfv.w φWWordD
tocycfv.1 φW:domW1-1D
Assertion tocycfv φCW=IDranWWcyclShift1W-1

Proof

Step Hyp Ref Expression
1 tocycval.1 C=toCycD
2 tocycfv.d φDV
3 tocycfv.w φWWordD
4 tocycfv.1 φW:domW1-1D
5 1 tocycval DVC=wuWordD|u:domu1-1DIDranwwcyclShift1w-1
6 2 5 syl φC=wuWordD|u:domu1-1DIDranwwcyclShift1w-1
7 simpr φw=Ww=W
8 7 rneqd φw=Wranw=ranW
9 8 difeq2d φw=WDranw=DranW
10 9 reseq2d φw=WIDranw=IDranW
11 7 oveq1d φw=WwcyclShift1=WcyclShift1
12 7 cnveqd φw=Ww-1=W-1
13 11 12 coeq12d φw=WwcyclShift1w-1=WcyclShift1W-1
14 10 13 uneq12d φw=WIDranwwcyclShift1w-1=IDranWWcyclShift1W-1
15 id u=Wu=W
16 dmeq u=Wdomu=domW
17 eqidd u=WD=D
18 15 16 17 f1eq123d u=Wu:domu1-1DW:domW1-1D
19 18 3 4 elrabd φWuWordD|u:domu1-1D
20 2 difexd φDranWV
21 20 resiexd φIDranWV
22 cshwcl WWordDWcyclShift1WordD
23 3 22 syl φWcyclShift1WordD
24 cnvexg WWordDW-1V
25 3 24 syl φW-1V
26 coexg WcyclShift1WordDW-1VWcyclShift1W-1V
27 23 25 26 syl2anc φWcyclShift1W-1V
28 unexg IDranWVWcyclShift1W-1VIDranWWcyclShift1W-1V
29 21 27 28 syl2anc φIDranWWcyclShift1W-1V
30 6 14 19 29 fvmptd φCW=IDranWWcyclShift1W-1