Metamath Proof Explorer


Theorem ttukey2g

Description: The Teichmüller-Tukey Lemma ttukey with a slightly stronger conclusion: we can set up the maximal element of A so that it also contains some given B e. A as a subset. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion ttukey2g AdomcardBAxxA𝒫xFinAxABxyA¬xy

Proof

Step Hyp Ref Expression
1 difss ABA
2 ssnum AdomcardABAABdomcard
3 1 2 mpan2 AdomcardABdomcard
4 isnum3 ABdomcardcardABAB
5 bren cardABABff:cardAB1-1 ontoAB
6 4 5 bitri ABdomcardff:cardAB1-1 ontoAB
7 simp1 f:cardAB1-1 ontoABBAxxA𝒫xFinAf:cardAB1-1 ontoAB
8 simp2 f:cardAB1-1 ontoABBAxxA𝒫xFinABA
9 simp3 f:cardAB1-1 ontoABBAxxA𝒫xFinAxxA𝒫xFinA
10 dmeq w=zdomw=domz
11 10 unieqd w=zdomw=domz
12 10 11 eqeq12d w=zdomw=domwdomz=domz
13 10 eqeq1d w=zdomw=domz=
14 rneq w=zranw=ranz
15 14 unieqd w=zranw=ranz
16 13 15 ifbieq2d w=zifdomw=Branw=ifdomz=Branz
17 id w=zw=z
18 17 11 fveq12d w=zwdomw=zdomz
19 11 fveq2d w=zfdomw=fdomz
20 19 sneqd w=zfdomw=fdomz
21 18 20 uneq12d w=zwdomwfdomw=zdomzfdomz
22 21 eleq1d w=zwdomwfdomwAzdomzfdomzA
23 22 20 ifbieq1d w=zifwdomwfdomwAfdomw=ifzdomzfdomzAfdomz
24 18 23 uneq12d w=zwdomwifwdomwfdomwAfdomw=zdomzifzdomzfdomzAfdomz
25 12 16 24 ifbieq12d w=zifdomw=domwifdomw=BranwwdomwifwdomwfdomwAfdomw=ifdomz=domzifdomz=BranzzdomzifzdomzfdomzAfdomz
26 25 cbvmptv wVifdomw=domwifdomw=BranwwdomwifwdomwfdomwAfdomw=zVifdomz=domzifdomz=BranzzdomzifzdomzfdomzAfdomz
27 recseq wVifdomw=domwifdomw=BranwwdomwifwdomwfdomwAfdomw=zVifdomz=domzifdomz=BranzzdomzifzdomzfdomzAfdomzrecswVifdomw=domwifdomw=BranwwdomwifwdomwfdomwAfdomw=recszVifdomz=domzifdomz=BranzzdomzifzdomzfdomzAfdomz
28 26 27 ax-mp recswVifdomw=domwifdomw=BranwwdomwifwdomwfdomwAfdomw=recszVifdomz=domzifdomz=BranzzdomzifzdomzfdomzAfdomz
29 7 8 9 28 ttukeylem7 f:cardAB1-1 ontoABBAxxA𝒫xFinAxABxyA¬xy
30 29 3expib f:cardAB1-1 ontoABBAxxA𝒫xFinAxABxyA¬xy
31 30 exlimiv ff:cardAB1-1 ontoABBAxxA𝒫xFinAxABxyA¬xy
32 6 31 sylbi ABdomcardBAxxA𝒫xFinAxABxyA¬xy
33 3 32 syl AdomcardBAxxA𝒫xFinAxABxyA¬xy
34 33 3impib AdomcardBAxxA𝒫xFinAxABxyA¬xy