Description: Lemma for tusbas , tusunif , and tustopn . (Contributed by Thierry Arnoux, 5-Dec-2017) (Proof shortened by AV, 28-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tuslem.k | |
|
Assertion | tuslem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tuslem.k | |
|
2 | baseid | |
|
3 | tsetndxnbasendx | |
|
4 | 3 | necomi | |
5 | 2 4 | setsnid | |
6 | ustbas2 | |
|
7 | uniexg | |
|
8 | dmexg | |
|
9 | eqid | |
|
10 | basendxltunifndx | |
|
11 | unifndxnn | |
|
12 | 9 10 11 | 2strbas1 | |
13 | 7 8 12 | 3syl | |
14 | 6 13 | eqtrd | |
15 | tusval | |
|
16 | 1 15 | eqtrid | |
17 | 16 | fveq2d | |
18 | 5 14 17 | 3eqtr4a | |
19 | unifid | |
|
20 | unifndxntsetndx | |
|
21 | 19 20 | setsnid | |
22 | 9 10 11 19 | 2strop1 | |
23 | 16 | fveq2d | |
24 | 21 22 23 | 3eqtr4a | |
25 | prex | |
|
26 | fvex | |
|
27 | tsetid | |
|
28 | 27 | setsid | |
29 | 25 26 28 | mp2an | |
30 | 16 | fveq2d | |
31 | 29 30 | eqtr4id | |
32 | utopbas | |
|
33 | 31 | unieqd | |
34 | 32 18 33 | 3eqtr3rd | |
35 | 34 | oveq2d | |
36 | fvex | |
|
37 | eqid | |
|
38 | 37 | restid | |
39 | 36 38 | ax-mp | |
40 | eqid | |
|
41 | eqid | |
|
42 | 40 41 | topnval | |
43 | 35 39 42 | 3eqtr3g | |
44 | 31 43 | eqtrd | |
45 | 18 24 44 | 3jca | |