Description: The induced subgraph S of a hypergraph G obtained by removing one vertex is actually a subgraph of G . A subgraph is called induced orspanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in Bollobas p. 2 and section 1.1 in Diestel p. 4). (Contributed by AV, 19-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uhgrspan1.v | |
|
uhgrspan1.i | |
||
uhgrspan1.f | |
||
uhgrspan1.s | |
||
Assertion | uhgrspan1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspan1.v | |
|
2 | uhgrspan1.i | |
|
3 | uhgrspan1.f | |
|
4 | uhgrspan1.s | |
|
5 | difssd | |
|
6 | 1 2 3 4 | uhgrspan1lem3 | |
7 | resresdm | |
|
8 | 6 7 | mp1i | |
9 | 2 | uhgrfun | |
10 | fvelima | |
|
11 | 10 | ex | |
12 | 9 11 | syl | |
13 | 12 | adantr | |
14 | eqidd | |
|
15 | fveq2 | |
|
16 | 14 15 | neleq12d | |
17 | 16 3 | elrab2 | |
18 | fvexd | |
|
19 | 1 2 | uhgrss | |
20 | 19 | ad2ant2r | |
21 | simprr | |
|
22 | elpwdifsn | |
|
23 | 18 20 21 22 | syl3anc | |
24 | eleq1 | |
|
25 | 24 | eqcoms | |
26 | 23 25 | syl5ibrcom | |
27 | 26 | ex | |
28 | 17 27 | biimtrid | |
29 | 28 | rexlimdv | |
30 | 13 29 | syld | |
31 | 30 | ssrdv | |
32 | opex | |
|
33 | 4 32 | eqeltri | |
34 | 33 | a1i | |
35 | 1 2 3 4 | uhgrspan1lem2 | |
36 | 35 | eqcomi | |
37 | eqid | |
|
38 | 6 | rneqi | |
39 | edgval | |
|
40 | df-ima | |
|
41 | 38 39 40 | 3eqtr4ri | |
42 | 36 1 37 2 41 | issubgr | |
43 | 34 42 | sylan2 | |
44 | 5 8 31 43 | mpbir3and | |