Metamath Proof Explorer


Theorem uhgrspan1

Description: The induced subgraph S of a hypergraph G obtained by removing one vertex is actually a subgraph of G . A subgraph is called induced orspanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in Bollobas p. 2 and section 1.1 in Diestel p. 4). (Contributed by AV, 19-Nov-2020)

Ref Expression
Hypotheses uhgrspan1.v V=VtxG
uhgrspan1.i I=iEdgG
uhgrspan1.f F=idomI|NIi
uhgrspan1.s S=VNIF
Assertion uhgrspan1 GUHGraphNVSSubGraphG

Proof

Step Hyp Ref Expression
1 uhgrspan1.v V=VtxG
2 uhgrspan1.i I=iEdgG
3 uhgrspan1.f F=idomI|NIi
4 uhgrspan1.s S=VNIF
5 difssd GUHGraphNVVNV
6 1 2 3 4 uhgrspan1lem3 iEdgS=IF
7 resresdm iEdgS=IFiEdgS=IdomiEdgS
8 6 7 mp1i GUHGraphNViEdgS=IdomiEdgS
9 2 uhgrfun GUHGraphFunI
10 fvelima FunIcIFjFIj=c
11 10 ex FunIcIFjFIj=c
12 9 11 syl GUHGraphcIFjFIj=c
13 12 adantr GUHGraphNVcIFjFIj=c
14 eqidd i=jN=N
15 fveq2 i=jIi=Ij
16 14 15 neleq12d i=jNIiNIj
17 16 3 elrab2 jFjdomINIj
18 fvexd GUHGraphNVjdomINIjIjV
19 1 2 uhgrss GUHGraphjdomIIjV
20 19 ad2ant2r GUHGraphNVjdomINIjIjV
21 simprr GUHGraphNVjdomINIjNIj
22 elpwdifsn IjVIjVNIjIj𝒫VN
23 18 20 21 22 syl3anc GUHGraphNVjdomINIjIj𝒫VN
24 eleq1 c=Ijc𝒫VNIj𝒫VN
25 24 eqcoms Ij=cc𝒫VNIj𝒫VN
26 23 25 syl5ibrcom GUHGraphNVjdomINIjIj=cc𝒫VN
27 26 ex GUHGraphNVjdomINIjIj=cc𝒫VN
28 17 27 biimtrid GUHGraphNVjFIj=cc𝒫VN
29 28 rexlimdv GUHGraphNVjFIj=cc𝒫VN
30 13 29 syld GUHGraphNVcIFc𝒫VN
31 30 ssrdv GUHGraphNVIF𝒫VN
32 opex VNIFV
33 4 32 eqeltri SV
34 33 a1i NVSV
35 1 2 3 4 uhgrspan1lem2 VtxS=VN
36 35 eqcomi VN=VtxS
37 eqid iEdgS=iEdgS
38 6 rneqi raniEdgS=ranIF
39 edgval EdgS=raniEdgS
40 df-ima IF=ranIF
41 38 39 40 3eqtr4ri IF=EdgS
42 36 1 37 2 41 issubgr GUHGraphSVSSubGraphGVNViEdgS=IdomiEdgSIF𝒫VN
43 34 42 sylan2 GUHGraphNVSSubGraphGVNViEdgS=IdomiEdgSIF𝒫VN
44 5 8 31 43 mpbir3and GUHGraphNVSSubGraphG