Metamath Proof Explorer


Theorem ulmshft

Description: A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypotheses ulmshft.z Z=M
ulmshft.w W=M+K
ulmshft.m φM
ulmshft.k φK
ulmshft.f φF:ZS
ulmshft.h φH=nWFnK
Assertion ulmshft φFuSGHuSG

Proof

Step Hyp Ref Expression
1 ulmshft.z Z=M
2 ulmshft.w W=M+K
3 ulmshft.m φM
4 ulmshft.k φK
5 ulmshft.f φF:ZS
6 ulmshft.h φH=nWFnK
7 1 2 3 4 5 6 ulmshftlem φFuSGHuSG
8 eqid M+K+K=M+K+K
9 3 4 zaddcld φM+K
10 4 znegcld φK
11 5 adantr φnWF:ZS
12 3 adantr φnWM
13 4 adantr φnWK
14 simpr φnWnW
15 14 2 eleqtrdi φnWnM+K
16 eluzsub MKnM+KnKM
17 12 13 15 16 syl3anc φnWnKM
18 17 1 eleqtrrdi φnWnKZ
19 11 18 ffvelcdmd φnWFnKS
20 6 19 fmpt3d φH:WS
21 simpr φmZmZ
22 21 1 eleqtrdi φmZmM
23 eluzelz mMm
24 22 23 syl φmZm
25 24 zcnd φmZm
26 4 zcnd φK
27 26 adantr φmZK
28 25 27 subnegd φmZmK=m+K
29 28 fveq2d φmZHmK=Hm+K
30 6 adantr φmZH=nWFnK
31 30 fveq1d φmZHm+K=nWFnKm+K
32 4 adantr φmZK
33 eluzadd mMKm+KM+K
34 22 32 33 syl2anc φmZm+KM+K
35 34 2 eleqtrrdi φmZm+KW
36 fvoveq1 n=m+KFnK=Fm+K-K
37 eqid nWFnK=nWFnK
38 fvex Fm+K-KV
39 36 37 38 fvmpt m+KWnWFnKm+K=Fm+K-K
40 35 39 syl φmZnWFnKm+K=Fm+K-K
41 25 27 pncand φmZm+K-K=m
42 41 fveq2d φmZFm+K-K=Fm
43 40 42 eqtrd φmZnWFnKm+K=Fm
44 29 31 43 3eqtrd φmZHmK=Fm
45 44 mpteq2dva φmZHmK=mZFm
46 3 zcnd φM
47 10 zcnd φK
48 46 26 47 addassd φM+K+K=M+K+K
49 26 negidd φK+K=0
50 49 oveq2d φM+K+K=M+0
51 46 addridd φM+0=M
52 48 50 51 3eqtrd φM+K+K=M
53 52 fveq2d φM+K+K=M
54 53 1 eqtr4di φM+K+K=Z
55 54 mpteq1d φmM+K+KHmK=mZHmK
56 5 feqmptd φF=mZFm
57 45 55 56 3eqtr4rd φF=mM+K+KHmK
58 2 8 9 10 20 57 ulmshftlem φHuSGFuSG
59 7 58 impbid φFuSGHuSG