| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ulmshft.z |  | 
						
							| 2 |  | ulmshft.w |  | 
						
							| 3 |  | ulmshft.m |  | 
						
							| 4 |  | ulmshft.k |  | 
						
							| 5 |  | ulmshft.f |  | 
						
							| 6 |  | ulmshft.h |  | 
						
							| 7 | 1 2 3 4 5 6 | ulmshftlem |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 3 4 | zaddcld |  | 
						
							| 10 | 4 | znegcld |  | 
						
							| 11 | 5 | adantr |  | 
						
							| 12 | 3 | adantr |  | 
						
							| 13 | 4 | adantr |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 | 14 2 | eleqtrdi |  | 
						
							| 16 |  | eluzsub |  | 
						
							| 17 | 12 13 15 16 | syl3anc |  | 
						
							| 18 | 17 1 | eleqtrrdi |  | 
						
							| 19 | 11 18 | ffvelcdmd |  | 
						
							| 20 | 6 19 | fmpt3d |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 | 21 1 | eleqtrdi |  | 
						
							| 23 |  | eluzelz |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 | 24 | zcnd |  | 
						
							| 26 | 4 | zcnd |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 | 25 27 | subnegd |  | 
						
							| 29 | 28 | fveq2d |  | 
						
							| 30 | 6 | adantr |  | 
						
							| 31 | 30 | fveq1d |  | 
						
							| 32 | 4 | adantr |  | 
						
							| 33 |  | eluzadd |  | 
						
							| 34 | 22 32 33 | syl2anc |  | 
						
							| 35 | 34 2 | eleqtrrdi |  | 
						
							| 36 |  | fvoveq1 |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 |  | fvex |  | 
						
							| 39 | 36 37 38 | fvmpt |  | 
						
							| 40 | 35 39 | syl |  | 
						
							| 41 | 25 27 | pncand |  | 
						
							| 42 | 41 | fveq2d |  | 
						
							| 43 | 40 42 | eqtrd |  | 
						
							| 44 | 29 31 43 | 3eqtrd |  | 
						
							| 45 | 44 | mpteq2dva |  | 
						
							| 46 | 3 | zcnd |  | 
						
							| 47 | 10 | zcnd |  | 
						
							| 48 | 46 26 47 | addassd |  | 
						
							| 49 | 26 | negidd |  | 
						
							| 50 | 49 | oveq2d |  | 
						
							| 51 | 46 | addridd |  | 
						
							| 52 | 48 50 51 | 3eqtrd |  | 
						
							| 53 | 52 | fveq2d |  | 
						
							| 54 | 53 1 | eqtr4di |  | 
						
							| 55 | 54 | mpteq1d |  | 
						
							| 56 | 5 | feqmptd |  | 
						
							| 57 | 45 55 56 | 3eqtr4rd |  | 
						
							| 58 | 2 8 9 10 20 57 | ulmshftlem |  | 
						
							| 59 | 7 58 | impbid |  |