Description: Lemma for umgr2cycl . (Contributed by BTernaryTau, 17-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | umgr2cycllem.1 | |
|
umgr2cycllem.2 | |
||
umgr2cycllem.3 | |
||
umgr2cycllem.4 | |
||
umgr2cycllem.5 | |
||
umgr2cycllem.6 | |
||
Assertion | umgr2cycllem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr2cycllem.1 | |
|
2 | umgr2cycllem.2 | |
|
3 | umgr2cycllem.3 | |
|
4 | umgr2cycllem.4 | |
|
5 | umgr2cycllem.5 | |
|
6 | umgr2cycllem.6 | |
|
7 | umgruhgr | |
|
8 | 2 | uhgrfun | |
9 | 3 7 8 | 3syl | |
10 | 2 | iedgedg | |
11 | 9 4 10 | syl2anc | |
12 | eqid | |
|
13 | eqid | |
|
14 | 12 13 | umgredg | |
15 | 3 11 14 | syl2anc | |
16 | ax-5 | |
|
17 | alral | |
|
18 | 16 17 | syl | |
19 | r19.29 | |
|
20 | 18 19 | sylan | |
21 | eqid | |
|
22 | simp2 | |
|
23 | simp3l | |
|
24 | eqimss2 | |
|
25 | 24 | adantl | |
26 | 25 | 3ad2ant3 | |
27 | 6 | sseq2d | |
28 | 24 27 | imbitrid | |
29 | 28 | adantld | |
30 | 29 | adantld | |
31 | 30 | 3impib | |
32 | 26 31 | jca | |
33 | 5 | 3ad2ant1 | |
34 | 21 1 22 23 32 12 2 33 | 2cycl2d | |
35 | 34 | 3expib | |
36 | 35 | exp4c | |
37 | 36 | com23 | |
38 | 37 | imp4a | |
39 | s3cli | |
|
40 | breq2 | |
|
41 | 40 | rspcev | |
42 | 39 41 | mpan | |
43 | rexex | |
|
44 | 42 43 | syl | |
45 | 38 44 | syl8 | |
46 | 45 | rexlimdv | |
47 | 20 46 | syl5 | |
48 | 47 | expd | |
49 | 48 | rexlimdv | |
50 | 15 49 | mpd | |