Metamath Proof Explorer


Theorem umgr2cycllem

Description: Lemma for umgr2cycl . (Contributed by BTernaryTau, 17-Oct-2023)

Ref Expression
Hypotheses umgr2cycllem.1 F=⟨“JK”⟩
umgr2cycllem.2 I=iEdgG
umgr2cycllem.3 φGUMGraph
umgr2cycllem.4 φJdomI
umgr2cycllem.5 φJK
umgr2cycllem.6 φIJ=IK
Assertion umgr2cycllem φpFCyclesGp

Proof

Step Hyp Ref Expression
1 umgr2cycllem.1 F=⟨“JK”⟩
2 umgr2cycllem.2 I=iEdgG
3 umgr2cycllem.3 φGUMGraph
4 umgr2cycllem.4 φJdomI
5 umgr2cycllem.5 φJK
6 umgr2cycllem.6 φIJ=IK
7 umgruhgr GUMGraphGUHGraph
8 2 uhgrfun GUHGraphFunI
9 3 7 8 3syl φFunI
10 2 iedgedg FunIJdomIIJEdgG
11 9 4 10 syl2anc φIJEdgG
12 eqid VtxG=VtxG
13 eqid EdgG=EdgG
14 12 13 umgredg GUMGraphIJEdgGaVtxGbVtxGabIJ=ab
15 3 11 14 syl2anc φaVtxGbVtxGabIJ=ab
16 ax-5 aVtxGbaVtxG
17 alral baVtxGbVtxGaVtxG
18 16 17 syl aVtxGbVtxGaVtxG
19 r19.29 bVtxGaVtxGbVtxGabIJ=abbVtxGaVtxGabIJ=ab
20 18 19 sylan aVtxGbVtxGabIJ=abbVtxGaVtxGabIJ=ab
21 eqid ⟨“aba”⟩=⟨“aba”⟩
22 simp2 φaVtxGbVtxGabIJ=abaVtxGbVtxG
23 simp3l φaVtxGbVtxGabIJ=abab
24 eqimss2 IJ=ababIJ
25 24 adantl abIJ=ababIJ
26 25 3ad2ant3 φaVtxGbVtxGabIJ=ababIJ
27 6 sseq2d φabIJabIK
28 24 27 imbitrid φIJ=ababIK
29 28 adantld φabIJ=ababIK
30 29 adantld φaVtxGbVtxGabIJ=ababIK
31 30 3impib φaVtxGbVtxGabIJ=ababIK
32 26 31 jca φaVtxGbVtxGabIJ=ababIJabIK
33 5 3ad2ant1 φaVtxGbVtxGabIJ=abJK
34 21 1 22 23 32 12 2 33 2cycl2d φaVtxGbVtxGabIJ=abFCyclesG⟨“aba”⟩
35 34 3expib φaVtxGbVtxGabIJ=abFCyclesG⟨“aba”⟩
36 35 exp4c φaVtxGbVtxGabIJ=abFCyclesG⟨“aba”⟩
37 36 com23 φbVtxGaVtxGabIJ=abFCyclesG⟨“aba”⟩
38 37 imp4a φbVtxGaVtxGabIJ=abFCyclesG⟨“aba”⟩
39 s3cli ⟨“aba”⟩WordV
40 breq2 p=⟨“aba”⟩FCyclesGpFCyclesG⟨“aba”⟩
41 40 rspcev ⟨“aba”⟩WordVFCyclesG⟨“aba”⟩pWordVFCyclesGp
42 39 41 mpan FCyclesG⟨“aba”⟩pWordVFCyclesGp
43 rexex pWordVFCyclesGppFCyclesGp
44 42 43 syl FCyclesG⟨“aba”⟩pFCyclesGp
45 38 44 syl8 φbVtxGaVtxGabIJ=abpFCyclesGp
46 45 rexlimdv φbVtxGaVtxGabIJ=abpFCyclesGp
47 20 46 syl5 φaVtxGbVtxGabIJ=abpFCyclesGp
48 47 expd φaVtxGbVtxGabIJ=abpFCyclesGp
49 48 rexlimdv φaVtxGbVtxGabIJ=abpFCyclesGp
50 15 49 mpd φpFCyclesGp