| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgr2cycllem.1 |  | 
						
							| 2 |  | umgr2cycllem.2 |  | 
						
							| 3 |  | umgr2cycllem.3 |  | 
						
							| 4 |  | umgr2cycllem.4 |  | 
						
							| 5 |  | umgr2cycllem.5 |  | 
						
							| 6 |  | umgr2cycllem.6 |  | 
						
							| 7 |  | umgruhgr |  | 
						
							| 8 | 2 | uhgrfun |  | 
						
							| 9 | 3 7 8 | 3syl |  | 
						
							| 10 | 2 | iedgedg |  | 
						
							| 11 | 9 4 10 | syl2anc |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 12 13 | umgredg |  | 
						
							| 15 | 3 11 14 | syl2anc |  | 
						
							| 16 |  | ax-5 |  | 
						
							| 17 |  | alral |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 |  | r19.29 |  | 
						
							| 20 | 18 19 | sylan |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 |  | simp2 |  | 
						
							| 23 |  | simp3l |  | 
						
							| 24 |  | eqimss2 |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 | 25 | 3ad2ant3 |  | 
						
							| 27 | 6 | sseq2d |  | 
						
							| 28 | 24 27 | imbitrid |  | 
						
							| 29 | 28 | adantld |  | 
						
							| 30 | 29 | adantld |  | 
						
							| 31 | 30 | 3impib |  | 
						
							| 32 | 26 31 | jca |  | 
						
							| 33 | 5 | 3ad2ant1 |  | 
						
							| 34 | 21 1 22 23 32 12 2 33 | 2cycl2d |  | 
						
							| 35 | 34 | 3expib |  | 
						
							| 36 | 35 | exp4c |  | 
						
							| 37 | 36 | com23 |  | 
						
							| 38 | 37 | imp4a |  | 
						
							| 39 |  | s3cli |  | 
						
							| 40 |  | breq2 |  | 
						
							| 41 | 40 | rspcev |  | 
						
							| 42 | 39 41 | mpan |  | 
						
							| 43 |  | rexex |  | 
						
							| 44 | 42 43 | syl |  | 
						
							| 45 | 38 44 | syl8 |  | 
						
							| 46 | 45 | rexlimdv |  | 
						
							| 47 | 20 46 | syl5 |  | 
						
							| 48 | 47 | expd |  | 
						
							| 49 | 48 | rexlimdv |  | 
						
							| 50 | 15 49 | mpd |  |