Description: Lemma for umgrres and usgrres . (Contributed by AV, 27-Nov-2020) (Revised by AV, 19-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | upgrres.v | |
|
upgrres.e | |
||
upgrres.f | |
||
Assertion | umgrreslem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrres.v | |
|
2 | upgrres.e | |
|
3 | upgrres.f | |
|
4 | df-ima | |
|
5 | fveq2 | |
|
6 | neleq2 | |
|
7 | 5 6 | syl | |
8 | 7 3 | elrab2 | |
9 | 1 2 | umgrf | |
10 | ffvelcdm | |
|
11 | fveqeq2 | |
|
12 | 11 | elrab | |
13 | simpll | |
|
14 | elpwi | |
|
15 | 14 | adantr | |
16 | 15 | adantr | |
17 | simpr | |
|
18 | elpwdifsn | |
|
19 | 13 16 17 18 | syl3anc | |
20 | simpr | |
|
21 | 20 | adantr | |
22 | 11 19 21 | elrabd | |
23 | 22 | ex | |
24 | 23 | a1d | |
25 | 12 24 | sylbi | |
26 | 10 25 | syl | |
27 | 26 | ex | |
28 | 27 | com23 | |
29 | 9 28 | syl | |
30 | 29 | imp4b | |
31 | 8 30 | biimtrid | |
32 | 31 | ralrimiv | |
33 | umgruhgr | |
|
34 | 2 | uhgrfun | |
35 | 33 34 | syl | |
36 | 35 | adantr | |
37 | 3 | ssrab3 | |
38 | funimass4 | |
|
39 | 36 37 38 | sylancl | |
40 | 32 39 | mpbird | |
41 | 4 40 | eqsstrrid | |