| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffn |
|
| 2 |
1
|
anim1i |
|
| 3 |
2
|
3adant3 |
|
| 4 |
|
3anass |
|
| 5 |
|
curfv |
|
| 6 |
4 5
|
sylanbr |
|
| 7 |
6
|
an32s |
|
| 8 |
7
|
eqeq1d |
|
| 9 |
|
eqcom |
|
| 10 |
8 9
|
bitrdi |
|
| 11 |
3 10
|
sylan |
|
| 12 |
|
curf |
|
| 13 |
12
|
ffvelcdmda |
|
| 14 |
|
elmapfn |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
fnbrfvb |
|
| 17 |
15 16
|
sylan |
|
| 18 |
17
|
anasss |
|
| 19 |
|
ibar |
|
| 20 |
19
|
adantl |
|
| 21 |
11 18 20
|
3bitr3d |
|
| 22 |
|
df-br |
|
| 23 |
|
elfvdm |
|
| 24 |
22 23
|
sylbi |
|
| 25 |
|
fdm |
|
| 26 |
25
|
eleq2d |
|
| 27 |
26
|
biimpa |
|
| 28 |
24 27
|
sylan2 |
|
| 29 |
|
ffvelcdm |
|
| 30 |
|
elmapi |
|
| 31 |
|
fdm |
|
| 32 |
29 30 31
|
3syl |
|
| 33 |
|
vex |
|
| 34 |
|
vex |
|
| 35 |
33 34
|
breldm |
|
| 36 |
|
eleq2 |
|
| 37 |
36
|
biimpa |
|
| 38 |
32 35 37
|
syl2an |
|
| 39 |
38
|
an32s |
|
| 40 |
28 39
|
mpdan |
|
| 41 |
28 40
|
jca |
|
| 42 |
12 41
|
sylan |
|
| 43 |
42
|
stoic1a |
|
| 44 |
|
simpl |
|
| 45 |
44
|
con3i |
|
| 46 |
45
|
adantl |
|
| 47 |
43 46
|
2falsed |
|
| 48 |
21 47
|
pm2.61dan |
|
| 49 |
48
|
oprabbidv |
|
| 50 |
|
df-unc |
|
| 51 |
|
df-mpo |
|
| 52 |
49 50 51
|
3eqtr4g |
|
| 53 |
|
fnov |
|
| 54 |
1 53
|
sylib |
|
| 55 |
54
|
3ad2ant1 |
|
| 56 |
52 55
|
eqtr4d |
|