Metamath Proof Explorer


Theorem unitnegcl

Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses unitnegcl.1 U=UnitR
unitnegcl.2 N=invgR
Assertion unitnegcl RRingXUNXU

Proof

Step Hyp Ref Expression
1 unitnegcl.1 U=UnitR
2 unitnegcl.2 N=invgR
3 simpl RRingXURRing
4 ringgrp RRingRGrp
5 eqid BaseR=BaseR
6 5 1 unitcl XUXBaseR
7 5 2 grpinvcl RGrpXBaseRNXBaseR
8 4 6 7 syl2an RRingXUNXBaseR
9 eqid rR=rR
10 5 9 2 dvdsrneg RRingNXBaseRNXrRNNX
11 8 10 syldan RRingXUNXrRNNX
12 5 2 grpinvinv RGrpXBaseRNNX=X
13 4 6 12 syl2an RRingXUNNX=X
14 11 13 breqtrd RRingXUNXrRX
15 simpr RRingXUXU
16 eqid 1R=1R
17 eqid opprR=opprR
18 eqid ropprR=ropprR
19 1 16 9 17 18 isunit XUXrR1RXropprR1R
20 15 19 sylib RRingXUXrR1RXropprR1R
21 20 simpld RRingXUXrR1R
22 5 9 dvdsrtr RRingNXrRXXrR1RNXrR1R
23 3 14 21 22 syl3anc RRingXUNXrR1R
24 17 opprring RRingopprRRing
25 24 adantr RRingXUopprRRing
26 17 5 opprbas BaseR=BaseopprR
27 17 2 opprneg N=invgopprR
28 26 18 27 dvdsrneg opprRRingNXBaseRNXropprRNNX
29 25 8 28 syl2anc RRingXUNXropprRNNX
30 29 13 breqtrd RRingXUNXropprRX
31 20 simprd RRingXUXropprR1R
32 26 18 dvdsrtr opprRRingNXropprRXXropprR1RNXropprR1R
33 25 30 31 32 syl3anc RRingXUNXropprR1R
34 1 16 9 17 18 isunit NXUNXrR1RNXropprR1R
35 23 33 34 sylanbrc RRingXUNXU