Metamath Proof Explorer


Theorem unitrrg

Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015)

Ref Expression
Hypotheses unitrrg.e E=RLRegR
unitrrg.u U=UnitR
Assertion unitrrg RRingUE

Proof

Step Hyp Ref Expression
1 unitrrg.e E=RLRegR
2 unitrrg.u U=UnitR
3 eqid BaseR=BaseR
4 3 2 unitcl xUxBaseR
5 4 adantl RRingxUxBaseR
6 oveq2 xRy=0RinvrRxRxRy=invrRxR0R
7 eqid invrR=invrR
8 eqid R=R
9 eqid 1R=1R
10 2 7 8 9 unitlinv RRingxUinvrRxRx=1R
11 10 adantr RRingxUyBaseRinvrRxRx=1R
12 11 oveq1d RRingxUyBaseRinvrRxRxRy=1RRy
13 simpll RRingxUyBaseRRRing
14 2 7 3 ringinvcl RRingxUinvrRxBaseR
15 14 adantr RRingxUyBaseRinvrRxBaseR
16 5 adantr RRingxUyBaseRxBaseR
17 simpr RRingxUyBaseRyBaseR
18 3 8 ringass RRinginvrRxBaseRxBaseRyBaseRinvrRxRxRy=invrRxRxRy
19 13 15 16 17 18 syl13anc RRingxUyBaseRinvrRxRxRy=invrRxRxRy
20 3 8 9 ringlidm RRingyBaseR1RRy=y
21 20 adantlr RRingxUyBaseR1RRy=y
22 12 19 21 3eqtr3d RRingxUyBaseRinvrRxRxRy=y
23 eqid 0R=0R
24 3 8 23 ringrz RRinginvrRxBaseRinvrRxR0R=0R
25 13 15 24 syl2anc RRingxUyBaseRinvrRxR0R=0R
26 22 25 eqeq12d RRingxUyBaseRinvrRxRxRy=invrRxR0Ry=0R
27 6 26 imbitrid RRingxUyBaseRxRy=0Ry=0R
28 27 ralrimiva RRingxUyBaseRxRy=0Ry=0R
29 1 3 8 23 isrrg xExBaseRyBaseRxRy=0Ry=0R
30 5 28 29 sylanbrc RRingxUxE
31 30 ex RRingxUxE
32 31 ssrdv RRingUE