Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unitrrg.e | |
|
unitrrg.u | |
||
Assertion | unitrrg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitrrg.e | |
|
2 | unitrrg.u | |
|
3 | eqid | |
|
4 | 3 2 | unitcl | |
5 | 4 | adantl | |
6 | oveq2 | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 2 7 8 9 | unitlinv | |
11 | 10 | adantr | |
12 | 11 | oveq1d | |
13 | simpll | |
|
14 | 2 7 3 | ringinvcl | |
15 | 14 | adantr | |
16 | 5 | adantr | |
17 | simpr | |
|
18 | 3 8 | ringass | |
19 | 13 15 16 17 18 | syl13anc | |
20 | 3 8 9 | ringlidm | |
21 | 20 | adantlr | |
22 | 12 19 21 | 3eqtr3d | |
23 | eqid | |
|
24 | 3 8 23 | ringrz | |
25 | 13 15 24 | syl2anc | |
26 | 22 25 | eqeq12d | |
27 | 6 26 | imbitrid | |
28 | 27 | ralrimiva | |
29 | 1 3 8 23 | isrrg | |
30 | 5 28 29 | sylanbrc | |
31 | 30 | ex | |
32 | 31 | ssrdv | |