Metamath Proof Explorer


Theorem unxpdomlem2

Description: Lemma for unxpdom . (Contributed by Mario Carneiro, 13-Jan-2013)

Ref Expression
Hypotheses unxpdomlem1.1 F=xabG
unxpdomlem1.2 G=ifxaxifx=mtsifx=tnmx
unxpdomlem2.1 φwab
unxpdomlem2.2 φ¬m=n
unxpdomlem2.3 φ¬s=t
Assertion unxpdomlem2 φza¬wa¬Fz=Fw

Proof

Step Hyp Ref Expression
1 unxpdomlem1.1 F=xabG
2 unxpdomlem1.2 G=ifxaxifx=mtsifx=tnmx
3 unxpdomlem2.1 φwab
4 unxpdomlem2.2 φ¬m=n
5 unxpdomlem2.3 φ¬s=t
6 5 adantr φza¬wa¬s=t
7 elun1 zazab
8 7 ad2antrl φza¬wazab
9 1 2 unxpdomlem1 zabFz=ifzazifz=mtsifz=tnmz
10 8 9 syl φza¬waFz=ifzazifz=mtsifz=tnmz
11 iftrue zaifzazifz=mtsifz=tnmz=zifz=mts
12 11 ad2antrl φza¬waifzazifz=mtsifz=tnmz=zifz=mts
13 10 12 eqtrd φza¬waFz=zifz=mts
14 3 adantr φza¬wawab
15 1 2 unxpdomlem1 wabFw=ifwawifw=mtsifw=tnmw
16 14 15 syl φza¬waFw=ifwawifw=mtsifw=tnmw
17 iffalse ¬waifwawifw=mtsifw=tnmw=ifw=tnmw
18 17 ad2antll φza¬waifwawifw=mtsifw=tnmw=ifw=tnmw
19 16 18 eqtrd φza¬waFw=ifw=tnmw
20 13 19 eqeq12d φza¬waFz=Fwzifz=mts=ifw=tnmw
21 20 biimpa φza¬waFz=Fwzifz=mts=ifw=tnmw
22 vex zV
23 vex tV
24 vex sV
25 23 24 ifex ifz=mtsV
26 22 25 opth zifz=mts=ifw=tnmwz=ifw=tnmifz=mts=w
27 21 26 sylib φza¬waFz=Fwz=ifw=tnmifz=mts=w
28 27 simprd φza¬waFz=Fwifz=mts=w
29 iftrue z=mifz=mts=t
30 28 eqeq1d φza¬waFz=Fwifz=mts=tw=t
31 29 30 imbitrid φza¬waFz=Fwz=mw=t
32 iftrue w=tifw=tnm=n
33 27 simpld φza¬waFz=Fwz=ifw=tnm
34 33 eqeq1d φza¬waFz=Fwz=nifw=tnm=n
35 32 34 imbitrrid φza¬waFz=Fww=tz=n
36 31 35 syld φza¬waFz=Fwz=mz=n
37 4 ad2antrr φza¬waFz=Fw¬m=n
38 equequ1 z=mz=nm=n
39 38 notbid z=m¬z=n¬m=n
40 37 39 syl5ibrcom φza¬waFz=Fwz=m¬z=n
41 36 40 pm2.65d φza¬waFz=Fw¬z=m
42 41 iffalsed φza¬waFz=Fwifz=mts=s
43 iffalse ¬w=tifw=tnm=m
44 33 eqeq1d φza¬waFz=Fwz=mifw=tnm=m
45 43 44 imbitrrid φza¬waFz=Fw¬w=tz=m
46 41 45 mt3d φza¬waFz=Fww=t
47 28 42 46 3eqtr3d φza¬waFz=Fws=t
48 6 47 mtand φza¬wa¬Fz=Fw