Description: Lemma for unxpdom . (Contributed by Mario Carneiro, 13-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unxpdomlem1.1 | |
|
unxpdomlem1.2 | |
||
unxpdomlem2.1 | |
||
unxpdomlem2.2 | |
||
unxpdomlem2.3 | |
||
Assertion | unxpdomlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unxpdomlem1.1 | |
|
2 | unxpdomlem1.2 | |
|
3 | unxpdomlem2.1 | |
|
4 | unxpdomlem2.2 | |
|
5 | unxpdomlem2.3 | |
|
6 | 5 | adantr | |
7 | elun1 | |
|
8 | 7 | ad2antrl | |
9 | 1 2 | unxpdomlem1 | |
10 | 8 9 | syl | |
11 | iftrue | |
|
12 | 11 | ad2antrl | |
13 | 10 12 | eqtrd | |
14 | 3 | adantr | |
15 | 1 2 | unxpdomlem1 | |
16 | 14 15 | syl | |
17 | iffalse | |
|
18 | 17 | ad2antll | |
19 | 16 18 | eqtrd | |
20 | 13 19 | eqeq12d | |
21 | 20 | biimpa | |
22 | vex | |
|
23 | vex | |
|
24 | vex | |
|
25 | 23 24 | ifex | |
26 | 22 25 | opth | |
27 | 21 26 | sylib | |
28 | 27 | simprd | |
29 | iftrue | |
|
30 | 28 | eqeq1d | |
31 | 29 30 | imbitrid | |
32 | iftrue | |
|
33 | 27 | simpld | |
34 | 33 | eqeq1d | |
35 | 32 34 | imbitrrid | |
36 | 31 35 | syld | |
37 | 4 | ad2antrr | |
38 | equequ1 | |
|
39 | 38 | notbid | |
40 | 37 39 | syl5ibrcom | |
41 | 36 40 | pm2.65d | |
42 | 41 | iffalsed | |
43 | iffalse | |
|
44 | 33 | eqeq1d | |
45 | 43 44 | imbitrrid | |
46 | 41 45 | mt3d | |
47 | 28 42 46 | 3eqtr3d | |
48 | 6 47 | mtand | |