Metamath Proof Explorer


Theorem uppropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same universal pairs. (Contributed by Zhi Wang, 20-Nov-2025)

Ref Expression
Hypotheses uppropd.1 φ Hom 𝑓 A = Hom 𝑓 B
uppropd.2 φ comp 𝑓 A = comp 𝑓 B
uppropd.3 φ Hom 𝑓 C = Hom 𝑓 D
uppropd.4 φ comp 𝑓 C = comp 𝑓 D
uppropd.a φ A V
uppropd.b φ B V
uppropd.c φ C V
uppropd.d φ D V
Assertion uppropd Could not format assertion : No typesetting found for |- ( ph -> ( A UP C ) = ( B UP D ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uppropd.1 φ Hom 𝑓 A = Hom 𝑓 B
2 uppropd.2 φ comp 𝑓 A = comp 𝑓 B
3 uppropd.3 φ Hom 𝑓 C = Hom 𝑓 D
4 uppropd.4 φ comp 𝑓 C = comp 𝑓 D
5 uppropd.a φ A V
6 uppropd.b φ B V
7 uppropd.c φ C V
8 uppropd.d φ D V
9 1 2 3 4 5 6 7 8 funcpropd φ A Func C = B Func D
10 3 homfeqbas φ Base C = Base D
11 10 adantr φ f A Func C Base C = Base D
12 1 homfeqbas φ Base A = Base B
13 12 adantr φ f A Func C w Base C Base A = Base B
14 13 adantr φ f A Func C w Base C x Base A m w Hom C 1 st f x Base A = Base B
15 eqid Base C = Base C
16 eqid Hom C = Hom C
17 eqid Hom D = Hom D
18 3 ad3antrrr φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A Hom 𝑓 C = Hom 𝑓 D
19 simprr φ f A Func C w Base C w Base C
20 19 ad2antrr φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A w Base C
21 eqid Base A = Base A
22 simprl φ f A Func C w Base C f A Func C
23 22 func1st2nd φ f A Func C w Base C 1 st f A Func C 2 nd f
24 21 15 23 funcf1 φ f A Func C w Base C 1 st f : Base A Base C
25 24 adantr φ f A Func C w Base C x Base A m w Hom C 1 st f x 1 st f : Base A Base C
26 25 ffvelcdmda φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A 1 st f y Base C
27 15 16 17 18 20 26 homfeqval φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A w Hom C 1 st f y = w Hom D 1 st f y
28 eqid Hom A = Hom A
29 eqid Hom B = Hom B
30 1 ad4antr φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y Hom 𝑓 A = Hom 𝑓 B
31 simprl φ f A Func C w Base C x Base A m w Hom C 1 st f x x Base A
32 31 ad2antrr φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y x Base A
33 simplr φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y y Base A
34 21 28 29 30 32 33 homfeqval φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y x Hom A y = x Hom B y
35 eqid comp C = comp C
36 eqid comp D = comp D
37 18 ad2antrr φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y k x Hom A y Hom 𝑓 C = Hom 𝑓 D
38 4 ad5antr φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y k x Hom A y comp 𝑓 C = comp 𝑓 D
39 20 ad2antrr φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y k x Hom A y w Base C
40 24 ffvelcdmda φ f A Func C w Base C x Base A 1 st f x Base C
41 40 adantrr φ f A Func C w Base C x Base A m w Hom C 1 st f x 1 st f x Base C
42 41 ad3antrrr φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y k x Hom A y 1 st f x Base C
43 26 ad2antrr φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y k x Hom A y 1 st f y Base C
44 simprr φ f A Func C w Base C x Base A m w Hom C 1 st f x m w Hom C 1 st f x
45 44 ad3antrrr φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y k x Hom A y m w Hom C 1 st f x
46 23 ad3antrrr φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y 1 st f A Func C 2 nd f
47 21 28 16 46 32 33 funcf2 φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y x 2 nd f y : x Hom A y 1 st f x Hom C 1 st f y
48 47 ffvelcdmda φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y k x Hom A y x 2 nd f y k 1 st f x Hom C 1 st f y
49 15 16 35 36 37 38 39 42 43 45 48 comfeqval φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y k x Hom A y x 2 nd f y k w 1 st f x comp C 1 st f y m = x 2 nd f y k w 1 st f x comp D 1 st f y m
50 49 eqeq2d φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y k x Hom A y g = x 2 nd f y k w 1 st f x comp C 1 st f y m g = x 2 nd f y k w 1 st f x comp D 1 st f y m
51 34 50 reueqbidva φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y ∃! k x Hom A y g = x 2 nd f y k w 1 st f x comp C 1 st f y m ∃! k x Hom B y g = x 2 nd f y k w 1 st f x comp D 1 st f y m
52 27 51 raleqbidva φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y ∃! k x Hom A y g = x 2 nd f y k w 1 st f x comp C 1 st f y m g w Hom D 1 st f y ∃! k x Hom B y g = x 2 nd f y k w 1 st f x comp D 1 st f y m
53 14 52 raleqbidva φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y ∃! k x Hom A y g = x 2 nd f y k w 1 st f x comp C 1 st f y m y Base B g w Hom D 1 st f y ∃! k x Hom B y g = x 2 nd f y k w 1 st f x comp D 1 st f y m
54 53 pm5.32da φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y ∃! k x Hom A y g = x 2 nd f y k w 1 st f x comp C 1 st f y m x Base A m w Hom C 1 st f x y Base B g w Hom D 1 st f y ∃! k x Hom B y g = x 2 nd f y k w 1 st f x comp D 1 st f y m
55 3 ad2antrr φ f A Func C w Base C x Base A Hom 𝑓 C = Hom 𝑓 D
56 simplrr φ f A Func C w Base C x Base A w Base C
57 15 16 17 55 56 40 homfeqval φ f A Func C w Base C x Base A w Hom C 1 st f x = w Hom D 1 st f x
58 57 eleq2d φ f A Func C w Base C x Base A m w Hom C 1 st f x m w Hom D 1 st f x
59 58 pm5.32da φ f A Func C w Base C x Base A m w Hom C 1 st f x x Base A m w Hom D 1 st f x
60 13 eleq2d φ f A Func C w Base C x Base A x Base B
61 60 anbi1d φ f A Func C w Base C x Base A m w Hom D 1 st f x x Base B m w Hom D 1 st f x
62 59 61 bitrd φ f A Func C w Base C x Base A m w Hom C 1 st f x x Base B m w Hom D 1 st f x
63 62 anbi1d φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base B g w Hom D 1 st f y ∃! k x Hom B y g = x 2 nd f y k w 1 st f x comp D 1 st f y m x Base B m w Hom D 1 st f x y Base B g w Hom D 1 st f y ∃! k x Hom B y g = x 2 nd f y k w 1 st f x comp D 1 st f y m
64 54 63 bitrd φ f A Func C w Base C x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y ∃! k x Hom A y g = x 2 nd f y k w 1 st f x comp C 1 st f y m x Base B m w Hom D 1 st f x y Base B g w Hom D 1 st f y ∃! k x Hom B y g = x 2 nd f y k w 1 st f x comp D 1 st f y m
65 64 opabbidv φ f A Func C w Base C x m | x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y ∃! k x Hom A y g = x 2 nd f y k w 1 st f x comp C 1 st f y m = x m | x Base B m w Hom D 1 st f x y Base B g w Hom D 1 st f y ∃! k x Hom B y g = x 2 nd f y k w 1 st f x comp D 1 st f y m
66 9 11 65 mpoeq123dva φ f A Func C , w Base C x m | x Base A m w Hom C 1 st f x y Base A g w Hom C 1 st f y ∃! k x Hom A y g = x 2 nd f y k w 1 st f x comp C 1 st f y m = f B Func D , w Base D x m | x Base B m w Hom D 1 st f x y Base B g w Hom D 1 st f y ∃! k x Hom B y g = x 2 nd f y k w 1 st f x comp D 1 st f y m
67 21 15 28 16 35 upfval Could not format ( A UP C ) = ( f e. ( A Func C ) , w e. ( Base ` C ) |-> { <. x , m >. | ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) ) } ) : No typesetting found for |- ( A UP C ) = ( f e. ( A Func C ) , w e. ( Base ` C ) |-> { <. x , m >. | ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) ) } ) with typecode |-
68 eqid Base B = Base B
69 eqid Base D = Base D
70 68 69 29 17 36 upfval Could not format ( B UP D ) = ( f e. ( B Func D ) , w e. ( Base ` D ) |-> { <. x , m >. | ( ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) } ) : No typesetting found for |- ( B UP D ) = ( f e. ( B Func D ) , w e. ( Base ` D ) |-> { <. x , m >. | ( ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) } ) with typecode |-
71 66 67 70 3eqtr4g Could not format ( ph -> ( A UP C ) = ( B UP D ) ) : No typesetting found for |- ( ph -> ( A UP C ) = ( B UP D ) ) with typecode |-