Metamath Proof Explorer


Theorem uptr2

Description: Universal property and fully faithful functor surjective on objects. (Contributed by Zhi Wang, 25-Nov-2025)

Ref Expression
Hypotheses uptr2.a A = Base C
uptr2.b B = Base D
uptr2.y φ Y = R X
uptr2.r φ R : A onto B
uptr2.s φ R C Full D C Faith D S
uptr2.f φ K L func R S = F G
uptr2.x φ X A
uptr2.k φ K D Func E L
Assertion uptr2 Could not format assertion : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> Y ( <. K , L >. ( D UP E ) Z ) M ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uptr2.a A = Base C
2 uptr2.b B = Base D
3 uptr2.y φ Y = R X
4 uptr2.r φ R : A onto B
5 uptr2.s φ R C Full D C Faith D S
6 uptr2.f φ K L func R S = F G
7 uptr2.x φ X A
8 uptr2.k φ K D Func E L
9 simpr Could not format ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> X ( <. F , G >. ( C UP E ) Z ) M ) : No typesetting found for |- ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> X ( <. F , G >. ( C UP E ) Z ) M ) with typecode |-
10 eqid Base E = Base E
11 9 10 uprcl3 Could not format ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> Z e. ( Base ` E ) ) : No typesetting found for |- ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> Z e. ( Base ` E ) ) with typecode |-
12 eqid Hom E = Hom E
13 9 12 uprcl5 Could not format ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> M e. ( Z ( Hom ` E ) ( F ` X ) ) ) : No typesetting found for |- ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> M e. ( Z ( Hom ` E ) ( F ` X ) ) ) with typecode |-
14 11 13 jca Could not format ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) : No typesetting found for |- ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) with typecode |-
15 simpr Could not format ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> Y ( <. K , L >. ( D UP E ) Z ) M ) : No typesetting found for |- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> Y ( <. K , L >. ( D UP E ) Z ) M ) with typecode |-
16 15 10 uprcl3 Could not format ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> Z e. ( Base ` E ) ) : No typesetting found for |- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> Z e. ( Base ` E ) ) with typecode |-
17 15 12 uprcl5 Could not format ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> M e. ( Z ( Hom ` E ) ( K ` Y ) ) ) : No typesetting found for |- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> M e. ( Z ( Hom ` E ) ( K ` Y ) ) ) with typecode |-
18 3 fveq2d φ K Y = K R X
19 inss1 C Full D C Faith D C Full D
20 fullfunc C Full D C Func D
21 19 20 sstri C Full D C Faith D C Func D
22 21 ssbri R C Full D C Faith D S R C Func D S
23 5 22 syl φ R C Func D S
24 1 23 8 6 7 cofu1a φ K R X = F X
25 18 24 eqtrd φ K Y = F X
26 25 oveq2d φ Z Hom E K Y = Z Hom E F X
27 26 adantr Could not format ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> ( Z ( Hom ` E ) ( K ` Y ) ) = ( Z ( Hom ` E ) ( F ` X ) ) ) : No typesetting found for |- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> ( Z ( Hom ` E ) ( K ` Y ) ) = ( Z ( Hom ` E ) ( F ` X ) ) ) with typecode |-
28 17 27 eleqtrd Could not format ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> M e. ( Z ( Hom ` E ) ( F ` X ) ) ) : No typesetting found for |- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> M e. ( Z ( Hom ` E ) ( F ` X ) ) ) with typecode |-
29 16 28 jca Could not format ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) : No typesetting found for |- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) with typecode |-
30 4 adantr φ Z Base E M Z Hom E F X R : A onto B
31 fof R : A onto B R : A B
32 30 31 syl φ Z Base E M Z Hom E F X R : A B
33 32 ffvelcdmda φ Z Base E M Z Hom E F X x A R x B
34 foelrn R : A onto B y B x A y = R x
35 30 34 sylan φ Z Base E M Z Hom E F X y B x A y = R x
36 simp3 φ Z Base E M Z Hom E F X x A y = R x y = R x
37 36 fveq2d φ Z Base E M Z Hom E F X x A y = R x K y = K R x
38 simp1l φ Z Base E M Z Hom E F X x A y = R x φ
39 38 23 syl φ Z Base E M Z Hom E F X x A y = R x R C Func D S
40 8 adantr φ Z Base E M Z Hom E F X K D Func E L
41 40 3ad2ant1 φ Z Base E M Z Hom E F X x A y = R x K D Func E L
42 38 6 syl φ Z Base E M Z Hom E F X x A y = R x K L func R S = F G
43 simp2 φ Z Base E M Z Hom E F X x A y = R x x A
44 1 39 41 42 43 cofu1a φ Z Base E M Z Hom E F X x A y = R x K R x = F x
45 37 44 eqtrd φ Z Base E M Z Hom E F X x A y = R x K y = F x
46 45 oveq2d φ Z Base E M Z Hom E F X x A y = R x Z Hom E K y = Z Hom E F x
47 eqid Hom C = Hom C
48 eqid Hom D = Hom D
49 38 5 syl φ Z Base E M Z Hom E F X x A y = R x R C Full D C Faith D S
50 38 7 syl φ Z Base E M Z Hom E F X x A y = R x X A
51 1 47 48 49 50 43 ffthf1o φ Z Base E M Z Hom E F X x A y = R x X S x : X Hom C x 1-1 onto R X Hom D R x
52 38 3 syl φ Z Base E M Z Hom E F X x A y = R x Y = R X
53 52 36 oveq12d φ Z Base E M Z Hom E F X x A y = R x Y Hom D y = R X Hom D R x
54 53 f1oeq3d φ Z Base E M Z Hom E F X x A y = R x X S x : X Hom C x 1-1 onto Y Hom D y X S x : X Hom C x 1-1 onto R X Hom D R x
55 51 54 mpbird φ Z Base E M Z Hom E F X x A y = R x X S x : X Hom C x 1-1 onto Y Hom D y
56 f1of X S x : X Hom C x 1-1 onto Y Hom D y X S x : X Hom C x Y Hom D y
57 55 56 syl φ Z Base E M Z Hom E F X x A y = R x X S x : X Hom C x Y Hom D y
58 57 ffvelcdmda φ Z Base E M Z Hom E F X x A y = R x k X Hom C x X S x k Y Hom D y
59 f1ofveu X S x : X Hom C x 1-1 onto Y Hom D y l Y Hom D y ∃! k X Hom C x X S x k = l
60 eqcom X S x k = l l = X S x k
61 60 reubii ∃! k X Hom C x X S x k = l ∃! k X Hom C x l = X S x k
62 59 61 sylib X S x : X Hom C x 1-1 onto Y Hom D y l Y Hom D y ∃! k X Hom C x l = X S x k
63 55 62 sylan φ Z Base E M Z Hom E F X x A y = R x l Y Hom D y ∃! k X Hom C x l = X S x k
64 38 25 syl φ Z Base E M Z Hom E F X x A y = R x K Y = F X
65 64 opeq2d φ Z Base E M Z Hom E F X x A y = R x Z K Y = Z F X
66 65 45 oveq12d φ Z Base E M Z Hom E F X x A y = R x Z K Y comp E K y = Z F X comp E F x
67 66 adantr φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k Z K Y comp E K y = Z F X comp E F x
68 52 adantr φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k Y = R X
69 simpl3 φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k y = R x
70 68 69 oveq12d φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k Y L y = R X L R x
71 simprr φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k l = X S x k
72 70 71 fveq12d φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k Y L y l = R X L R x X S x k
73 39 adantr φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k R C Func D S
74 41 adantr φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k K D Func E L
75 42 adantr φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k K L func R S = F G
76 50 adantr φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k X A
77 43 adantr φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k x A
78 simprl φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k k X Hom C x
79 1 73 74 75 76 77 47 78 cofu2a φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k R X L R x X S x k = X G x k
80 72 79 eqtrd φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k Y L y l = X G x k
81 eqidd φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k M = M
82 67 80 81 oveq123d φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k Y L y l Z K Y comp E K y M = X G x k Z F X comp E F x M
83 82 eqeq2d φ Z Base E M Z Hom E F X x A y = R x k X Hom C x l = X S x k g = Y L y l Z K Y comp E K y M g = X G x k Z F X comp E F x M
84 58 63 83 reuxfr1dd φ Z Base E M Z Hom E F X x A y = R x ∃! l Y Hom D y g = Y L y l Z K Y comp E K y M ∃! k X Hom C x g = X G x k Z F X comp E F x M
85 46 84 raleqbidv φ Z Base E M Z Hom E F X x A y = R x g Z Hom E K y ∃! l Y Hom D y g = Y L y l Z K Y comp E K y M g Z Hom E F x ∃! k X Hom C x g = X G x k Z F X comp E F x M
86 33 35 85 ralxfrd2 φ Z Base E M Z Hom E F X y B g Z Hom E K y ∃! l Y Hom D y g = Y L y l Z K Y comp E K y M x A g Z Hom E F x ∃! k X Hom C x g = X G x k Z F X comp E F x M
87 eqid comp E = comp E
88 simprl φ Z Base E M Z Hom E F X Z Base E
89 3 adantr φ Z Base E M Z Hom E F X Y = R X
90 7 adantr φ Z Base E M Z Hom E F X X A
91 32 90 ffvelcdmd φ Z Base E M Z Hom E F X R X B
92 89 91 eqeltrd φ Z Base E M Z Hom E F X Y B
93 simprr φ Z Base E M Z Hom E F X M Z Hom E F X
94 26 adantr φ Z Base E M Z Hom E F X Z Hom E K Y = Z Hom E F X
95 93 94 eleqtrrd φ Z Base E M Z Hom E F X M Z Hom E K Y
96 2 10 48 12 87 88 40 92 95 isup Could not format ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( Y ( <. K , L >. ( D UP E ) Z ) M <-> A. y e. B A. g e. ( Z ( Hom ` E ) ( K ` y ) ) E! l e. ( Y ( Hom ` D ) y ) g = ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) ) ) : No typesetting found for |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( Y ( <. K , L >. ( D UP E ) Z ) M <-> A. y e. B A. g e. ( Z ( Hom ` E ) ( K ` y ) ) E! l e. ( Y ( Hom ` D ) y ) g = ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) ) ) with typecode |-
97 23 8 cofucla φ K L func R S C Func E
98 6 97 eqeltrrd φ F G C Func E
99 df-br F C Func E G F G C Func E
100 98 99 sylibr φ F C Func E G
101 100 adantr φ Z Base E M Z Hom E F X F C Func E G
102 1 10 47 12 87 88 101 90 93 isup Could not format ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> A. x e. A A. g e. ( Z ( Hom ` E ) ( F ` x ) ) E! k e. ( X ( Hom ` C ) x ) g = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) ) : No typesetting found for |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> A. x e. A A. g e. ( Z ( Hom ` E ) ( F ` x ) ) E! k e. ( X ( Hom ` C ) x ) g = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) ) with typecode |-
103 86 96 102 3bitr4rd Could not format ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> Y ( <. K , L >. ( D UP E ) Z ) M ) ) : No typesetting found for |- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> Y ( <. K , L >. ( D UP E ) Z ) M ) ) with typecode |-
104 14 29 103 bibiad Could not format ( ph -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> Y ( <. K , L >. ( D UP E ) Z ) M ) ) : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> Y ( <. K , L >. ( D UP E ) Z ) M ) ) with typecode |-