Metamath Proof Explorer


Theorem uspgropssxp

Description: The set G of "simple pseudographs" for a fixed set V of vertices is a subset of a Cartesian product. For more details about the class G of all "simple pseudographs" see comments on uspgrbisymrel . (Contributed by AV, 24-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P=𝒫PairsV
uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
Assertion uspgropssxp VWGW×P

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P=𝒫PairsV
2 uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
3 eleq1 V=vVWvW
4 3 eqcoms v=VVWvW
5 4 adantr v=VqUSHGraphVtxq=vEdgq=eVWvW
6 5 biimpac VWv=VqUSHGraphVtxq=vEdgq=evW
7 uspgrupgr qUSHGraphqUPGraph
8 upgredgssspr qUPGraphEdgqPairsVtxq
9 7 8 syl qUSHGraphEdgqPairsVtxq
10 9 3ad2ant1 qUSHGraphVtxq=vEdgq=ev=VEdgqPairsVtxq
11 simp2l qUSHGraphVtxq=vEdgq=ev=VVtxq=v
12 simp3 qUSHGraphVtxq=vEdgq=ev=Vv=V
13 11 12 eqtrd qUSHGraphVtxq=vEdgq=ev=VVtxq=V
14 13 fveq2d qUSHGraphVtxq=vEdgq=ev=VPairsVtxq=PairsV
15 10 14 sseqtrd qUSHGraphVtxq=vEdgq=ev=VEdgqPairsV
16 fvex EdgqV
17 16 elpw Edgq𝒫PairsVEdgqPairsV
18 15 17 sylibr qUSHGraphVtxq=vEdgq=ev=VEdgq𝒫PairsV
19 simpr Vtxq=vEdgq=eEdgq=e
20 19 eqcomd Vtxq=vEdgq=ee=Edgq
21 20 3ad2ant2 qUSHGraphVtxq=vEdgq=ev=Ve=Edgq
22 1 a1i qUSHGraphVtxq=vEdgq=ev=VP=𝒫PairsV
23 18 21 22 3eltr4d qUSHGraphVtxq=vEdgq=ev=VeP
24 23 3exp qUSHGraphVtxq=vEdgq=ev=VeP
25 24 rexlimiv qUSHGraphVtxq=vEdgq=ev=VeP
26 25 impcom v=VqUSHGraphVtxq=vEdgq=eeP
27 26 adantl VWv=VqUSHGraphVtxq=vEdgq=eeP
28 6 27 opabssxpd VWve|v=VqUSHGraphVtxq=vEdgq=eW×P
29 2 28 eqsstrid VWGW×P