Description: The set G of "simple pseudographs" for a fixed set V of vertices is a subset of a Cartesian product. For more details about the class G of all "simple pseudographs" see comments on uspgrbisymrel . (Contributed by AV, 24-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uspgrsprf.p | |
|
uspgrsprf.g | |
||
Assertion | uspgropssxp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrsprf.p | |
|
2 | uspgrsprf.g | |
|
3 | eleq1 | |
|
4 | 3 | eqcoms | |
5 | 4 | adantr | |
6 | 5 | biimpac | |
7 | uspgrupgr | |
|
8 | upgredgssspr | |
|
9 | 7 8 | syl | |
10 | 9 | 3ad2ant1 | |
11 | simp2l | |
|
12 | simp3 | |
|
13 | 11 12 | eqtrd | |
14 | 13 | fveq2d | |
15 | 10 14 | sseqtrd | |
16 | fvex | |
|
17 | 16 | elpw | |
18 | 15 17 | sylibr | |
19 | simpr | |
|
20 | 19 | eqcomd | |
21 | 20 | 3ad2ant2 | |
22 | 1 | a1i | |
23 | 18 21 22 | 3eltr4d | |
24 | 23 | 3exp | |
25 | 24 | rexlimiv | |
26 | 25 | impcom | |
27 | 26 | adantl | |
28 | 6 27 | opabssxpd | |
29 | 2 28 | eqsstrid | |