Description: A uniform structure on a nonempty base is a filter. Remark 3 of BourbakiTop1 p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017) (Proof shortened by Peter Mazsa, 2-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | ustfilxp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex | |
|
2 | isust | |
|
3 | 1 2 | syl | |
4 | 3 | ibi | |
5 | 4 | adantl | |
6 | 5 | simp1d | |
7 | 5 | simp2d | |
8 | 7 | ne0d | |
9 | 5 | simp3d | |
10 | 9 | r19.21bi | |
11 | 10 | simp3d | |
12 | 11 | simp1d | |
13 | opelidres | |
|
14 | 13 | elv | |
15 | 14 | biimpri | |
16 | 15 | rgen | |
17 | r19.2z | |
|
18 | 16 17 | mpan2 | |
19 | 18 | ad2antrr | |
20 | ne0i | |
|
21 | 20 | rexlimivw | |
22 | 19 21 | syl | |
23 | ssn0 | |
|
24 | 12 22 23 | syl2anc | |
25 | 24 | nelrdva | |
26 | df-nel | |
|
27 | 25 26 | sylibr | |
28 | 10 | simp2d | |
29 | 28 | r19.21bi | |
30 | vex | |
|
31 | 30 | inex2 | |
32 | 31 | pwid | |
33 | 32 | a1i | |
34 | 29 33 | elind | |
35 | 34 | ne0d | |
36 | 35 | ralrimiva | |
37 | 36 | ralrimiva | |
38 | 8 27 37 | 3jca | |
39 | 1 1 | xpexd | |
40 | isfbas | |
|
41 | 39 40 | syl | |
42 | 41 | adantl | |
43 | 6 38 42 | mpbir2and | |
44 | n0 | |
|
45 | elin | |
|
46 | velpw | |
|
47 | 46 | anbi2i | |
48 | 45 47 | bitri | |
49 | 48 | exbii | |
50 | 44 49 | bitri | |
51 | 10 | simp1d | |
52 | 51 | r19.21bi | |
53 | 52 | an32s | |
54 | 53 | expimpd | |
55 | 54 | exlimdv | |
56 | 50 55 | biimtrid | |
57 | 56 | ralrimiva | |
58 | isfil | |
|
59 | 43 57 58 | sylanbrc | |