Metamath Proof Explorer


Theorem uzind

Description: Induction on the upper integers that start at M . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005)

Ref Expression
Hypotheses uzind.1 j=Mφψ
uzind.2 j=kφχ
uzind.3 j=k+1φθ
uzind.4 j=Nφτ
uzind.5 Mψ
uzind.6 MkMkχθ
Assertion uzind MNMNτ

Proof

Step Hyp Ref Expression
1 uzind.1 j=Mφψ
2 uzind.2 j=kφχ
3 uzind.3 j=k+1φθ
4 uzind.4 j=Nφτ
5 uzind.5 Mψ
6 uzind.6 MkMkχθ
7 zre MM
8 7 leidd MMM
9 8 5 jca MMMψ
10 9 ancli MMMMψ
11 breq2 j=MMjMM
12 11 1 anbi12d j=MMjφMMψ
13 12 elrab Mj|MjφMMMψ
14 10 13 sylibr MMj|Mjφ
15 peano2z kk+1
16 15 a1i Mkk+1
17 16 adantrd MkMkχk+1
18 zre kk
19 ltp1 kk<k+1
20 19 adantl Mkk<k+1
21 peano2re kk+1
22 21 ancli kkk+1
23 lelttr Mkk+1Mkk<k+1M<k+1
24 23 3expb Mkk+1Mkk<k+1M<k+1
25 22 24 sylan2 MkMkk<k+1M<k+1
26 20 25 mpan2d MkMkM<k+1
27 ltle Mk+1M<k+1Mk+1
28 21 27 sylan2 MkM<k+1Mk+1
29 26 28 syld MkMkMk+1
30 7 18 29 syl2an MkMkMk+1
31 30 adantrd MkMkχMk+1
32 31 expimpd MkMkχMk+1
33 6 3exp MkMkχθ
34 33 imp4d MkMkχθ
35 32 34 jcad MkMkχMk+1θ
36 17 35 jcad MkMkχk+1Mk+1θ
37 breq2 j=kMjMk
38 37 2 anbi12d j=kMjφMkχ
39 38 elrab kj|MjφkMkχ
40 breq2 j=k+1MjMk+1
41 40 3 anbi12d j=k+1MjφMk+1θ
42 41 elrab k+1j|Mjφk+1Mk+1θ
43 36 39 42 3imtr4g Mkj|Mjφk+1j|Mjφ
44 43 ralrimiv Mkj|Mjφk+1j|Mjφ
45 peano5uzti MMj|Mjφkj|Mjφk+1j|Mjφw|Mwj|Mjφ
46 14 44 45 mp2and Mw|Mwj|Mjφ
47 46 sseld MNw|MwNj|Mjφ
48 breq2 w=NMwMN
49 48 elrab Nw|MwNMN
50 breq2 j=NMjMN
51 50 4 anbi12d j=NMjφMNτ
52 51 elrab Nj|MjφNMNτ
53 47 49 52 3imtr3g MNMNNMNτ
54 53 3impib MNMNNMNτ
55 54 simprrd MNMNτ