Description: Induction on the upper integers that start at M . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uzind.1 | |
|
uzind.2 | |
||
uzind.3 | |
||
uzind.4 | |
||
uzind.5 | |
||
uzind.6 | |
||
Assertion | uzind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzind.1 | |
|
2 | uzind.2 | |
|
3 | uzind.3 | |
|
4 | uzind.4 | |
|
5 | uzind.5 | |
|
6 | uzind.6 | |
|
7 | zre | |
|
8 | 7 | leidd | |
9 | 8 5 | jca | |
10 | 9 | ancli | |
11 | breq2 | |
|
12 | 11 1 | anbi12d | |
13 | 12 | elrab | |
14 | 10 13 | sylibr | |
15 | peano2z | |
|
16 | 15 | a1i | |
17 | 16 | adantrd | |
18 | zre | |
|
19 | ltp1 | |
|
20 | 19 | adantl | |
21 | peano2re | |
|
22 | 21 | ancli | |
23 | lelttr | |
|
24 | 23 | 3expb | |
25 | 22 24 | sylan2 | |
26 | 20 25 | mpan2d | |
27 | ltle | |
|
28 | 21 27 | sylan2 | |
29 | 26 28 | syld | |
30 | 7 18 29 | syl2an | |
31 | 30 | adantrd | |
32 | 31 | expimpd | |
33 | 6 | 3exp | |
34 | 33 | imp4d | |
35 | 32 34 | jcad | |
36 | 17 35 | jcad | |
37 | breq2 | |
|
38 | 37 2 | anbi12d | |
39 | 38 | elrab | |
40 | breq2 | |
|
41 | 40 3 | anbi12d | |
42 | 41 | elrab | |
43 | 36 39 42 | 3imtr4g | |
44 | 43 | ralrimiv | |
45 | peano5uzti | |
|
46 | 14 44 45 | mp2and | |
47 | 46 | sseld | |
48 | breq2 | |
|
49 | 48 | elrab | |
50 | breq2 | |
|
51 | 50 4 | anbi12d | |
52 | 51 | elrab | |
53 | 47 49 52 | 3imtr3g | |
54 | 53 | 3impib | |
55 | 54 | simprrd | |