| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzind.1 |  | 
						
							| 2 |  | uzind.2 |  | 
						
							| 3 |  | uzind.3 |  | 
						
							| 4 |  | uzind.4 |  | 
						
							| 5 |  | uzind.5 |  | 
						
							| 6 |  | uzind.6 |  | 
						
							| 7 |  | zre |  | 
						
							| 8 | 7 | leidd |  | 
						
							| 9 | 8 5 | jca |  | 
						
							| 10 | 9 | ancli |  | 
						
							| 11 |  | breq2 |  | 
						
							| 12 | 11 1 | anbi12d |  | 
						
							| 13 | 12 | elrab |  | 
						
							| 14 | 10 13 | sylibr |  | 
						
							| 15 |  | peano2z |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 | 16 | adantrd |  | 
						
							| 18 |  | zre |  | 
						
							| 19 |  | ltp1 |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 |  | peano2re |  | 
						
							| 22 | 21 | ancli |  | 
						
							| 23 |  | lelttr |  | 
						
							| 24 | 23 | 3expb |  | 
						
							| 25 | 22 24 | sylan2 |  | 
						
							| 26 | 20 25 | mpan2d |  | 
						
							| 27 |  | ltle |  | 
						
							| 28 | 21 27 | sylan2 |  | 
						
							| 29 | 26 28 | syld |  | 
						
							| 30 | 7 18 29 | syl2an |  | 
						
							| 31 | 30 | adantrd |  | 
						
							| 32 | 31 | expimpd |  | 
						
							| 33 | 6 | 3exp |  | 
						
							| 34 | 33 | imp4d |  | 
						
							| 35 | 32 34 | jcad |  | 
						
							| 36 | 17 35 | jcad |  | 
						
							| 37 |  | breq2 |  | 
						
							| 38 | 37 2 | anbi12d |  | 
						
							| 39 | 38 | elrab |  | 
						
							| 40 |  | breq2 |  | 
						
							| 41 | 40 3 | anbi12d |  | 
						
							| 42 | 41 | elrab |  | 
						
							| 43 | 36 39 42 | 3imtr4g |  | 
						
							| 44 | 43 | ralrimiv |  | 
						
							| 45 |  | peano5uzti |  | 
						
							| 46 | 14 44 45 | mp2and |  | 
						
							| 47 | 46 | sseld |  | 
						
							| 48 |  | breq2 |  | 
						
							| 49 | 48 | elrab |  | 
						
							| 50 |  | breq2 |  | 
						
							| 51 | 50 4 | anbi12d |  | 
						
							| 52 | 51 | elrab |  | 
						
							| 53 | 47 49 52 | 3imtr3g |  | 
						
							| 54 | 53 | 3impib |  | 
						
							| 55 | 54 | simprrd |  |