Metamath Proof Explorer


Theorem uzrdgsuci

Description: Successor value of a recursive definition generator on upper integers. See comment in om2uzrdg . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G=recxVx+1Cω
uzrdg.1 AV
uzrdg.2 R=recxV,yVx+1xFyCAω
uzrdg.3 S=ranR
Assertion uzrdgsuci BCSB+1=BFSB

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G=recxVx+1Cω
3 uzrdg.1 AV
4 uzrdg.2 R=recxV,yVx+1xFyCAω
5 uzrdg.3 S=ranR
6 1 2 3 4 5 uzrdgfni SFnC
7 fnfun SFnCFunS
8 6 7 ax-mp FunS
9 peano2uz BCB+1C
10 1 2 3 4 uzrdglem B+1CB+12ndRG-1B+1ranR
11 9 10 syl BCB+12ndRG-1B+1ranR
12 11 5 eleqtrrdi BCB+12ndRG-1B+1S
13 funopfv FunSB+12ndRG-1B+1SSB+1=2ndRG-1B+1
14 8 12 13 mpsyl BCSB+1=2ndRG-1B+1
15 1 2 om2uzf1oi G:ω1-1 ontoC
16 f1ocnvdm G:ω1-1 ontoCBCG-1Bω
17 15 16 mpan BCG-1Bω
18 peano2 G-1BωsucG-1Bω
19 17 18 syl BCsucG-1Bω
20 1 2 om2uzsuci G-1BωGsucG-1B=GG-1B+1
21 17 20 syl BCGsucG-1B=GG-1B+1
22 f1ocnvfv2 G:ω1-1 ontoCBCGG-1B=B
23 15 22 mpan BCGG-1B=B
24 23 oveq1d BCGG-1B+1=B+1
25 21 24 eqtrd BCGsucG-1B=B+1
26 f1ocnvfv G:ω1-1 ontoCsucG-1BωGsucG-1B=B+1G-1B+1=sucG-1B
27 15 26 mpan sucG-1BωGsucG-1B=B+1G-1B+1=sucG-1B
28 19 25 27 sylc BCG-1B+1=sucG-1B
29 28 fveq2d BCRG-1B+1=RsucG-1B
30 29 fveq2d BC2ndRG-1B+1=2ndRsucG-1B
31 14 30 eqtrd BCSB+1=2ndRsucG-1B
32 frsuc G-1BωrecxV,yVx+1xFyCAωsucG-1B=xV,yVx+1xFyrecxV,yVx+1xFyCAωG-1B
33 4 fveq1i RsucG-1B=recxV,yVx+1xFyCAωsucG-1B
34 4 fveq1i RG-1B=recxV,yVx+1xFyCAωG-1B
35 34 fveq2i xV,yVx+1xFyRG-1B=xV,yVx+1xFyrecxV,yVx+1xFyCAωG-1B
36 32 33 35 3eqtr4g G-1BωRsucG-1B=xV,yVx+1xFyRG-1B
37 1 2 3 4 om2uzrdg G-1BωRG-1B=GG-1B2ndRG-1B
38 37 fveq2d G-1BωxV,yVx+1xFyRG-1B=xV,yVx+1xFyGG-1B2ndRG-1B
39 df-ov GG-1BxV,yVx+1xFy2ndRG-1B=xV,yVx+1xFyGG-1B2ndRG-1B
40 38 39 eqtr4di G-1BωxV,yVx+1xFyRG-1B=GG-1BxV,yVx+1xFy2ndRG-1B
41 36 40 eqtrd G-1BωRsucG-1B=GG-1BxV,yVx+1xFy2ndRG-1B
42 fvex GG-1BV
43 fvex 2ndRG-1BV
44 oveq1 z=GG-1Bz+1=GG-1B+1
45 oveq1 z=GG-1BzFw=GG-1BFw
46 44 45 opeq12d z=GG-1Bz+1zFw=GG-1B+1GG-1BFw
47 oveq2 w=2ndRG-1BGG-1BFw=GG-1BF2ndRG-1B
48 47 opeq2d w=2ndRG-1BGG-1B+1GG-1BFw=GG-1B+1GG-1BF2ndRG-1B
49 oveq1 x=zx+1=z+1
50 oveq1 x=zxFy=zFy
51 49 50 opeq12d x=zx+1xFy=z+1zFy
52 oveq2 y=wzFy=zFw
53 52 opeq2d y=wz+1zFy=z+1zFw
54 51 53 cbvmpov xV,yVx+1xFy=zV,wVz+1zFw
55 opex GG-1B+1GG-1BF2ndRG-1BV
56 46 48 54 55 ovmpo GG-1BV2ndRG-1BVGG-1BxV,yVx+1xFy2ndRG-1B=GG-1B+1GG-1BF2ndRG-1B
57 42 43 56 mp2an GG-1BxV,yVx+1xFy2ndRG-1B=GG-1B+1GG-1BF2ndRG-1B
58 41 57 eqtrdi G-1BωRsucG-1B=GG-1B+1GG-1BF2ndRG-1B
59 58 fveq2d G-1Bω2ndRsucG-1B=2ndGG-1B+1GG-1BF2ndRG-1B
60 ovex GG-1B+1V
61 ovex GG-1BF2ndRG-1BV
62 60 61 op2nd 2ndGG-1B+1GG-1BF2ndRG-1B=GG-1BF2ndRG-1B
63 59 62 eqtrdi G-1Bω2ndRsucG-1B=GG-1BF2ndRG-1B
64 17 63 syl BC2ndRsucG-1B=GG-1BF2ndRG-1B
65 1 2 3 4 uzrdglem BCB2ndRG-1BranR
66 65 5 eleqtrrdi BCB2ndRG-1BS
67 funopfv FunSB2ndRG-1BSSB=2ndRG-1B
68 8 66 67 mpsyl BCSB=2ndRG-1B
69 68 eqcomd BC2ndRG-1B=SB
70 23 69 oveq12d BCGG-1BF2ndRG-1B=BFSB
71 31 64 70 3eqtrd BCSB+1=BFSB