Metamath Proof Explorer


Theorem uzsup

Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Hypothesis uzsup.1 Z=M
Assertion uzsup MsupZ*<=+∞

Proof

Step Hyp Ref Expression
1 uzsup.1 Z=M
2 simpl MxM
3 flcl xx
4 3 peano2zd xx+1
5 id MM
6 ifcl x+1MifMx+1x+1M
7 4 5 6 syl2anr MxifMx+1x+1M
8 zre MM
9 reflcl xx
10 peano2re xx+1
11 9 10 syl xx+1
12 max1 Mx+1MifMx+1x+1M
13 8 11 12 syl2an MxMifMx+1x+1M
14 eluz2 ifMx+1x+1MMMifMx+1x+1MMifMx+1x+1M
15 2 7 13 14 syl3anbrc MxifMx+1x+1MM
16 15 1 eleqtrrdi MxifMx+1x+1MZ
17 simpr Mxx
18 11 adantl Mxx+1
19 7 zred MxifMx+1x+1M
20 fllep1 xxx+1
21 20 adantl Mxxx+1
22 max2 Mx+1x+1ifMx+1x+1M
23 8 11 22 syl2an Mxx+1ifMx+1x+1M
24 17 18 19 21 23 letrd MxxifMx+1x+1M
25 breq2 n=ifMx+1x+1MxnxifMx+1x+1M
26 25 rspcev ifMx+1x+1MZxifMx+1x+1MnZxn
27 16 24 26 syl2anc MxnZxn
28 27 ralrimiva MxnZxn
29 uzssz M
30 1 29 eqsstri Z
31 zssre
32 30 31 sstri Z
33 ressxr *
34 32 33 sstri Z*
35 supxrunb1 Z*xnZxnsupZ*<=+∞
36 34 35 ax-mp xnZxnsupZ*<=+∞
37 28 36 sylib MsupZ*<=+∞