Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uzsup.1 | |
|
Assertion | uzsup | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzsup.1 | |
|
2 | simpl | |
|
3 | flcl | |
|
4 | 3 | peano2zd | |
5 | id | |
|
6 | ifcl | |
|
7 | 4 5 6 | syl2anr | |
8 | zre | |
|
9 | reflcl | |
|
10 | peano2re | |
|
11 | 9 10 | syl | |
12 | max1 | |
|
13 | 8 11 12 | syl2an | |
14 | eluz2 | |
|
15 | 2 7 13 14 | syl3anbrc | |
16 | 15 1 | eleqtrrdi | |
17 | simpr | |
|
18 | 11 | adantl | |
19 | 7 | zred | |
20 | fllep1 | |
|
21 | 20 | adantl | |
22 | max2 | |
|
23 | 8 11 22 | syl2an | |
24 | 17 18 19 21 23 | letrd | |
25 | breq2 | |
|
26 | 25 | rspcev | |
27 | 16 24 26 | syl2anc | |
28 | 27 | ralrimiva | |
29 | uzssz | |
|
30 | 1 29 | eqsstri | |
31 | zssre | |
|
32 | 30 31 | sstri | |
33 | ressxr | |
|
34 | 32 33 | sstri | |
35 | supxrunb1 | |
|
36 | 34 35 | ax-mp | |
37 | 28 36 | sylib | |