Metamath Proof Explorer


Theorem vciOLD

Description: Obsolete version of cvsi . The properties of a complex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. The variable W was chosen because _V is already used for the universal class. (Contributed by NM, 3-Nov-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses vciOLD.1 G=1stW
vciOLD.2 S=2ndW
vciOLD.3 X=ranG
Assertion vciOLD WCVecOLDGAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx

Proof

Step Hyp Ref Expression
1 vciOLD.1 G=1stW
2 vciOLD.2 S=2ndW
3 vciOLD.3 X=ranG
4 1 eqeq2i g=Gg=1stW
5 eleq1 g=GgAbelOpGAbelOp
6 rneq g=Grang=ranG
7 6 3 eqtr4di g=Grang=X
8 xpeq2 rang=X×rang=×X
9 8 feq2d rang=Xs:×rangrangs:×Xrang
10 feq3 rang=Xs:×Xrangs:×XX
11 9 10 bitrd rang=Xs:×rangrangs:×XX
12 7 11 syl g=Gs:×rangrangs:×XX
13 oveq g=Gxgz=xGz
14 13 oveq2d g=Gysxgz=ysxGz
15 oveq g=Gysxgysz=ysxGysz
16 14 15 eqeq12d g=Gysxgz=ysxgyszysxGz=ysxGysz
17 7 16 raleqbidv g=Gzrangysxgz=ysxgyszzXysxGz=ysxGysz
18 oveq g=Gysxgzsx=ysxGzsx
19 18 eqeq2d g=Gy+zsx=ysxgzsxy+zsx=ysxGzsx
20 19 anbi1d g=Gy+zsx=ysxgzsxyzsx=yszsxy+zsx=ysxGzsxyzsx=yszsx
21 20 ralbidv g=Gzy+zsx=ysxgzsxyzsx=yszsxzy+zsx=ysxGzsxyzsx=yszsx
22 17 21 anbi12d g=Gzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsxzXysxGz=ysxGyszzy+zsx=ysxGzsxyzsx=yszsx
23 22 ralbidv g=Gyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsxyzXysxGz=ysxGyszzy+zsx=ysxGzsxyzsx=yszsx
24 23 anbi2d g=G1sx=xyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsx1sx=xyzXysxGz=ysxGyszzy+zsx=ysxGzsxyzsx=yszsx
25 7 24 raleqbidv g=Gxrang1sx=xyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsxxX1sx=xyzXysxGz=ysxGyszzy+zsx=ysxGzsxyzsx=yszsx
26 5 12 25 3anbi123d g=GgAbelOps:×rangrangxrang1sx=xyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsxGAbelOps:×XXxX1sx=xyzXysxGz=ysxGyszzy+zsx=ysxGzsxyzsx=yszsx
27 4 26 sylbir g=1stWgAbelOps:×rangrangxrang1sx=xyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsxGAbelOps:×XXxX1sx=xyzXysxGz=ysxGyszzy+zsx=ysxGzsxyzsx=yszsx
28 2 eqeq2i s=Ss=2ndW
29 feq1 s=Ss:×XXS:×XX
30 oveq s=S1sx=1Sx
31 30 eqeq1d s=S1sx=x1Sx=x
32 oveq s=SysxGz=ySxGz
33 oveq s=Sysx=ySx
34 oveq s=Sysz=ySz
35 33 34 oveq12d s=SysxGysz=ySxGySz
36 32 35 eqeq12d s=SysxGz=ysxGyszySxGz=ySxGySz
37 36 ralbidv s=SzXysxGz=ysxGyszzXySxGz=ySxGySz
38 oveq s=Sy+zsx=y+zSx
39 oveq s=Szsx=zSx
40 33 39 oveq12d s=SysxGzsx=ySxGzSx
41 38 40 eqeq12d s=Sy+zsx=ysxGzsxy+zSx=ySxGzSx
42 oveq s=Syzsx=yzSx
43 39 oveq2d s=Syszsx=yszSx
44 oveq s=SyszSx=ySzSx
45 43 44 eqtrd s=Syszsx=ySzSx
46 42 45 eqeq12d s=Syzsx=yszsxyzSx=ySzSx
47 41 46 anbi12d s=Sy+zsx=ysxGzsxyzsx=yszsxy+zSx=ySxGzSxyzSx=ySzSx
48 47 ralbidv s=Szy+zsx=ysxGzsxyzsx=yszsxzy+zSx=ySxGzSxyzSx=ySzSx
49 37 48 anbi12d s=SzXysxGz=ysxGyszzy+zsx=ysxGzsxyzsx=yszsxzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx
50 49 ralbidv s=SyzXysxGz=ysxGyszzy+zsx=ysxGzsxyzsx=yszsxyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx
51 31 50 anbi12d s=S1sx=xyzXysxGz=ysxGyszzy+zsx=ysxGzsxyzsx=yszsx1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx
52 51 ralbidv s=SxX1sx=xyzXysxGz=ysxGyszzy+zsx=ysxGzsxyzsx=yszsxxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx
53 29 52 3anbi23d s=SGAbelOps:×XXxX1sx=xyzXysxGz=ysxGyszzy+zsx=ysxGzsxyzsx=yszsxGAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx
54 28 53 sylbir s=2ndWGAbelOps:×XXxX1sx=xyzXysxGz=ysxGyszzy+zsx=ysxGzsxyzsx=yszsxGAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx
55 27 54 elopabi Wgs|gAbelOps:×rangrangxrang1sx=xyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsxGAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx
56 df-vc CVecOLD=gs|gAbelOps:×rangrangxrang1sx=xyzrangysxgz=ysxgyszzy+zsx=ysxgzsxyzsx=yszsx
57 55 56 eleq2s WCVecOLDGAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx