| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwmc.1 |  | 
						
							| 2 |  | vdwmc.2 |  | 
						
							| 3 |  | vdwmc.3 |  | 
						
							| 4 |  | vdwpc.4 |  | 
						
							| 5 |  | vdwpc.5 |  | 
						
							| 6 |  | fex |  | 
						
							| 7 | 3 1 6 | sylancl |  | 
						
							| 8 |  | df-br |  | 
						
							| 9 |  | df-vdwpc |  | 
						
							| 10 | 9 | eleq2i |  | 
						
							| 11 | 8 10 | bitri |  | 
						
							| 12 |  | simp1 |  | 
						
							| 13 | 12 | oveq2d |  | 
						
							| 14 | 13 5 | eqtr4di |  | 
						
							| 15 | 14 | oveq2d |  | 
						
							| 16 |  | simp2 |  | 
						
							| 17 | 16 | fveq2d |  | 
						
							| 18 | 17 | oveqd |  | 
						
							| 19 |  | simp3 |  | 
						
							| 20 | 19 | cnveqd |  | 
						
							| 21 | 19 | fveq1d |  | 
						
							| 22 | 21 | sneqd |  | 
						
							| 23 | 20 22 | imaeq12d |  | 
						
							| 24 | 18 23 | sseq12d |  | 
						
							| 25 | 14 24 | raleqbidv |  | 
						
							| 26 | 14 21 | mpteq12dv |  | 
						
							| 27 | 26 | rneqd |  | 
						
							| 28 | 27 | fveq2d |  | 
						
							| 29 | 28 12 | eqeq12d |  | 
						
							| 30 | 25 29 | anbi12d |  | 
						
							| 31 | 15 30 | rexeqbidv |  | 
						
							| 32 | 31 | rexbidv |  | 
						
							| 33 | 32 | eloprabga |  | 
						
							| 34 | 11 33 | bitrid |  | 
						
							| 35 | 4 2 7 34 | syl3anc |  |