Metamath Proof Explorer


Theorem vonvol2

Description: The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses vonvol2.f _fY
vonvol2.a φAV
vonvol2.x φXdomvolnA
vonvol2.y Y=fXranf
Assertion vonvol2 φvolnAX=volY

Proof

Step Hyp Ref Expression
1 vonvol2.f _fY
2 vonvol2.a φAV
3 vonvol2.x φXdomvolnA
4 vonvol2.y Y=fXranf
5 snfi AFin
6 5 a1i φAFin
7 6 3 vonmblss2 φXA
8 1 2 7 4 ssmapsn φX=YA
9 8 eqcomd φYA=X
10 9 3 eqeltrd φYAdomvolnA
11 7 adantr φfXXA
12 simpr φfXfX
13 11 12 sseldd φfXfA
14 elmapi fAf:A
15 frn f:Aranf
16 13 14 15 3syl φfXranf
17 16 ralrimiva φfXranf
18 iunss fXranffXranf
19 17 18 sylibr φfXranf
20 4 19 eqsstrid φY
21 2 20 vonvolmbl φYAdomvolnAYdomvol
22 10 21 mpbid φYdomvol
23 2 22 vonvol φvolnAYA=volY
24 9 eqcomd φX=YA
25 24 fveq2d φvolnAX=volnAYA
26 eqidd φvolY=volY
27 23 25 26 3eqtr4d φvolnAX=volY