Metamath Proof Explorer


Theorem wallispilem1

Description: I is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses wallispilem1.1 I = n 0 0 π sin x n dx
wallispilem1.2 φ N 0
Assertion wallispilem1 φ I N + 1 I N

Proof

Step Hyp Ref Expression
1 wallispilem1.1 I = n 0 0 π sin x n dx
2 wallispilem1.2 φ N 0
3 0re 0
4 3 a1i φ 0
5 pire π
6 5 a1i φ π
7 peano2nn0 N 0 N + 1 0
8 2 7 syl φ N + 1 0
9 iblioosinexp 0 π N + 1 0 x 0 π sin x N + 1 𝐿 1
10 4 6 8 9 syl3anc φ x 0 π sin x N + 1 𝐿 1
11 iblioosinexp 0 π N 0 x 0 π sin x N 𝐿 1
12 4 6 2 11 syl3anc φ x 0 π sin x N 𝐿 1
13 elioore x 0 π x
14 13 resincld x 0 π sin x
15 14 adantl φ x 0 π sin x
16 8 adantr φ x 0 π N + 1 0
17 15 16 reexpcld φ x 0 π sin x N + 1
18 2 adantr φ x 0 π N 0
19 15 18 reexpcld φ x 0 π sin x N
20 2 nn0zd φ N
21 uzid N N N
22 20 21 syl φ N N
23 peano2uz N N N + 1 N
24 22 23 syl φ N + 1 N
25 24 adantr φ x 0 π N + 1 N
26 14 3 jctil x 0 π 0 sin x
27 sinq12gt0 x 0 π 0 < sin x
28 ltle 0 sin x 0 < sin x 0 sin x
29 26 27 28 sylc x 0 π 0 sin x
30 29 adantl φ x 0 π 0 sin x
31 sinbnd x 1 sin x sin x 1
32 13 31 syl x 0 π 1 sin x sin x 1
33 32 simprd x 0 π sin x 1
34 33 adantl φ x 0 π sin x 1
35 15 18 25 30 34 leexp2rd φ x 0 π sin x N + 1 sin x N
36 10 12 17 19 35 itgle φ 0 π sin x N + 1 dx 0 π sin x N dx
37 oveq2 n = N + 1 sin x n = sin x N + 1
38 37 adantr n = N + 1 x 0 π sin x n = sin x N + 1
39 38 itgeq2dv n = N + 1 0 π sin x n dx = 0 π sin x N + 1 dx
40 itgex 0 π sin x N + 1 dx V
41 39 1 40 fvmpt N + 1 0 I N + 1 = 0 π sin x N + 1 dx
42 8 41 syl φ I N + 1 = 0 π sin x N + 1 dx
43 oveq2 n = N sin x n = sin x N
44 43 adantr n = N x 0 π sin x n = sin x N
45 44 itgeq2dv n = N 0 π sin x n dx = 0 π sin x N dx
46 itgex 0 π sin x N dx V
47 45 1 46 fvmpt N 0 I N = 0 π sin x N dx
48 2 47 syl φ I N = 0 π sin x N dx
49 36 42 48 3brtr4d φ I N + 1 I N