Metamath Proof Explorer


Theorem wallispilem1

Description: I is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses wallispilem1.1 I=n00πsinxndx
wallispilem1.2 φN0
Assertion wallispilem1 φIN+1IN

Proof

Step Hyp Ref Expression
1 wallispilem1.1 I=n00πsinxndx
2 wallispilem1.2 φN0
3 0re 0
4 3 a1i φ0
5 pire π
6 5 a1i φπ
7 peano2nn0 N0N+10
8 2 7 syl φN+10
9 iblioosinexp 0πN+10x0πsinxN+1𝐿1
10 4 6 8 9 syl3anc φx0πsinxN+1𝐿1
11 iblioosinexp 0πN0x0πsinxN𝐿1
12 4 6 2 11 syl3anc φx0πsinxN𝐿1
13 elioore x0πx
14 13 resincld x0πsinx
15 14 adantl φx0πsinx
16 8 adantr φx0πN+10
17 15 16 reexpcld φx0πsinxN+1
18 2 adantr φx0πN0
19 15 18 reexpcld φx0πsinxN
20 2 nn0zd φN
21 uzid NNN
22 20 21 syl φNN
23 peano2uz NNN+1N
24 22 23 syl φN+1N
25 24 adantr φx0πN+1N
26 14 3 jctil x0π0sinx
27 sinq12gt0 x0π0<sinx
28 ltle 0sinx0<sinx0sinx
29 26 27 28 sylc x0π0sinx
30 29 adantl φx0π0sinx
31 sinbnd x1sinxsinx1
32 13 31 syl x0π1sinxsinx1
33 32 simprd x0πsinx1
34 33 adantl φx0πsinx1
35 15 18 25 30 34 leexp2rd φx0πsinxN+1sinxN
36 10 12 17 19 35 itgle φ0πsinxN+1dx0πsinxNdx
37 oveq2 n=N+1sinxn=sinxN+1
38 37 adantr n=N+1x0πsinxn=sinxN+1
39 38 itgeq2dv n=N+10πsinxndx=0πsinxN+1dx
40 itgex 0πsinxN+1dxV
41 39 1 40 fvmpt N+10IN+1=0πsinxN+1dx
42 8 41 syl φIN+1=0πsinxN+1dx
43 oveq2 n=Nsinxn=sinxN
44 43 adantr n=Nx0πsinxn=sinxN
45 44 itgeq2dv n=N0πsinxndx=0πsinxNdx
46 itgex 0πsinxNdxV
47 45 1 46 fvmpt N0IN=0πsinxNdx
48 2 47 syl φIN=0πsinxNdx
49 36 42 48 3brtr4d φIN+1IN