Description: I is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wallispilem1.1 | |
|
wallispilem1.2 | |
||
Assertion | wallispilem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wallispilem1.1 | |
|
2 | wallispilem1.2 | |
|
3 | 0re | |
|
4 | 3 | a1i | |
5 | pire | |
|
6 | 5 | a1i | |
7 | peano2nn0 | |
|
8 | 2 7 | syl | |
9 | iblioosinexp | |
|
10 | 4 6 8 9 | syl3anc | |
11 | iblioosinexp | |
|
12 | 4 6 2 11 | syl3anc | |
13 | elioore | |
|
14 | 13 | resincld | |
15 | 14 | adantl | |
16 | 8 | adantr | |
17 | 15 16 | reexpcld | |
18 | 2 | adantr | |
19 | 15 18 | reexpcld | |
20 | 2 | nn0zd | |
21 | uzid | |
|
22 | 20 21 | syl | |
23 | peano2uz | |
|
24 | 22 23 | syl | |
25 | 24 | adantr | |
26 | 14 3 | jctil | |
27 | sinq12gt0 | |
|
28 | ltle | |
|
29 | 26 27 28 | sylc | |
30 | 29 | adantl | |
31 | sinbnd | |
|
32 | 13 31 | syl | |
33 | 32 | simprd | |
34 | 33 | adantl | |
35 | 15 18 25 30 34 | leexp2rd | |
36 | 10 12 17 19 35 | itgle | |
37 | oveq2 | |
|
38 | 37 | adantr | |
39 | 38 | itgeq2dv | |
40 | itgex | |
|
41 | 39 1 40 | fvmpt | |
42 | 8 41 | syl | |
43 | oveq2 | |
|
44 | 43 | adantr | |
45 | 44 | itgeq2dv | |
46 | itgex | |
|
47 | 45 1 46 | fvmpt | |
48 | 2 47 | syl | |
49 | 36 42 48 | 3brtr4d | |