Metamath Proof Explorer


Theorem wallispilem2

Description: A first set of properties for the sequence I that will be used in the proof of the Wallis product formula. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypothesis wallispilem2.1 I=n00πsinxndx
Assertion wallispilem2 I0=πI1=2N2IN=N1NIN2

Proof

Step Hyp Ref Expression
1 wallispilem2.1 I=n00πsinxndx
2 0nn0 00
3 oveq2 n=0sinxn=sinx0
4 3 adantr n=0x0πsinxn=sinx0
5 ioosscn 0π
6 5 sseli x0πx
7 6 sincld x0πsinx
8 7 adantl n=0x0πsinx
9 8 exp0d n=0x0πsinx0=1
10 4 9 eqtrd n=0x0πsinxn=1
11 10 itgeq2dv n=00πsinxndx=0π1dx
12 ioombl 0πdomvol
13 0re 0
14 pire π
15 ioovolcl 0πvol0π
16 13 14 15 mp2an vol0π
17 ax-1cn 1
18 itgconst 0πdomvolvol0π10π1dx=1vol0π
19 12 16 17 18 mp3an 0π1dx=1vol0π
20 16 recni vol0π
21 20 mullidi 1vol0π=vol0π
22 pipos 0<π
23 13 14 22 ltleii 0π
24 volioo 0π0πvol0π=π0
25 13 14 23 24 mp3an vol0π=π0
26 14 recni π
27 26 subid1i π0=π
28 25 27 eqtri vol0π=π
29 21 28 eqtri 1vol0π=π
30 19 29 eqtri 0π1dx=π
31 11 30 eqtrdi n=00πsinxndx=π
32 14 elexi πV
33 31 1 32 fvmpt 00I0=π
34 2 33 ax-mp I0=π
35 1nn0 10
36 simpl n=1x0πn=1
37 36 oveq2d n=1x0πsinxn=sinx1
38 7 adantl n=1x0πsinx
39 38 exp1d n=1x0πsinx1=sinx
40 37 39 eqtrd n=1x0πsinxn=sinx
41 40 itgeq2dv n=10πsinxndx=0πsinxdx
42 itgex 0πsinxdxV
43 41 1 42 fvmpt 10I1=0πsinxdx
44 35 43 ax-mp I1=0πsinxdx
45 itgsin0pi 0πsinxdx=2
46 44 45 eqtri I1=2
47 id N2N2
48 1 47 itgsinexp N2IN=N1NIN2
49 34 46 48 3pm3.2i I0=πI1=2N2IN=N1NIN2