Description: Append one path segment (edge) E from vertex ( PN ) to a vertex C to a walk <. F , P >. to become a walk <. H , Q >. of the supergraph S obtained by adding the new edge to the graph G . Formerly proven directly for Eulerian paths (for pseudographs), see eupthp1 . (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 6-Mar-2021) (Proof shortened by AV, 18-Apr-2021) (Revised by AV, 8-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wlkp1.v | |
|
wlkp1.i | |
||
wlkp1.f | |
||
wlkp1.a | |
||
wlkp1.b | |
||
wlkp1.c | |
||
wlkp1.d | |
||
wlkp1.w | |
||
wlkp1.n | |
||
wlkp1.e | |
||
wlkp1.x | |
||
wlkp1.u | |
||
wlkp1.h | |
||
wlkp1.q | |
||
wlkp1.s | |
||
wlkp1.l | |
||
Assertion | wlkp1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.v | |
|
2 | wlkp1.i | |
|
3 | wlkp1.f | |
|
4 | wlkp1.a | |
|
5 | wlkp1.b | |
|
6 | wlkp1.c | |
|
7 | wlkp1.d | |
|
8 | wlkp1.w | |
|
9 | wlkp1.n | |
|
10 | wlkp1.e | |
|
11 | wlkp1.x | |
|
12 | wlkp1.u | |
|
13 | wlkp1.h | |
|
14 | wlkp1.q | |
|
15 | wlkp1.s | |
|
16 | wlkp1.l | |
|
17 | 2 | wlkf | |
18 | wrdf | |
|
19 | 9 | eqcomi | |
20 | 19 | oveq2i | |
21 | 20 | feq2i | |
22 | 18 21 | sylib | |
23 | 8 17 22 | 3syl | |
24 | 9 | fvexi | |
25 | 24 | a1i | |
26 | snidg | |
|
27 | 5 26 | syl | |
28 | dmsnopg | |
|
29 | 10 28 | syl | |
30 | 27 29 | eleqtrrd | |
31 | 25 30 | fsnd | |
32 | fzodisjsn | |
|
33 | 32 | a1i | |
34 | fun | |
|
35 | 23 31 33 34 | syl21anc | |
36 | 13 | a1i | |
37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | wlkp1lem2 | |
38 | 37 | oveq2d | |
39 | wlkcl | |
|
40 | eleq1 | |
|
41 | 40 | eqcoms | |
42 | elnn0uz | |
|
43 | 42 | biimpi | |
44 | 41 43 | syl6bi | |
45 | 9 44 | ax-mp | |
46 | 8 39 45 | 3syl | |
47 | fzosplitsn | |
|
48 | 46 47 | syl | |
49 | 38 48 | eqtrd | |
50 | 12 | dmeqd | |
51 | dmun | |
|
52 | 50 51 | eqtrdi | |
53 | 36 49 52 | feq123d | |
54 | 35 53 | mpbird | |
55 | iswrdb | |
|
56 | 54 55 | sylibr | |
57 | 1 | wlkp | |
58 | 8 57 | syl | |
59 | 9 | oveq2i | |
60 | 59 | feq2i | |
61 | 58 60 | sylibr | |
62 | ovexd | |
|
63 | 62 6 | fsnd | |
64 | fzp1disj | |
|
65 | 64 | a1i | |
66 | fun | |
|
67 | 61 63 65 66 | syl21anc | |
68 | fzsuc | |
|
69 | 46 68 | syl | |
70 | unidm | |
|
71 | 70 | eqcomi | |
72 | 71 | a1i | |
73 | 69 72 | feq23d | |
74 | 67 73 | mpbird | |
75 | 14 | a1i | |
76 | 37 | oveq2d | |
77 | 75 76 15 | feq123d | |
78 | 74 77 | mpbird | |
79 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | wlkp1lem8 | |
80 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | wlkp1lem4 | |
81 | eqid | |
|
82 | eqid | |
|
83 | 81 82 | iswlk | |
84 | 80 83 | syl | |
85 | 56 78 79 84 | mpbir3and | |