Metamath Proof Explorer


Theorem wlkp1

Description: Append one path segment (edge) E from vertex ( PN ) to a vertex C to a walk <. F , P >. to become a walk <. H , Q >. of the supergraph S obtained by adding the new edge to the graph G . Formerly proven directly for Eulerian paths (for pseudographs), see eupthp1 . (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 6-Mar-2021) (Proof shortened by AV, 18-Apr-2021) (Revised by AV, 8-Apr-2024)

Ref Expression
Hypotheses wlkp1.v V=VtxG
wlkp1.i I=iEdgG
wlkp1.f φFunI
wlkp1.a φIFin
wlkp1.b φBW
wlkp1.c φCV
wlkp1.d φ¬BdomI
wlkp1.w φFWalksGP
wlkp1.n N=F
wlkp1.e φEEdgG
wlkp1.x φPNCE
wlkp1.u φiEdgS=IBE
wlkp1.h H=FNB
wlkp1.q Q=PN+1C
wlkp1.s φVtxS=V
wlkp1.l φC=PNE=C
Assertion wlkp1 φHWalksSQ

Proof

Step Hyp Ref Expression
1 wlkp1.v V=VtxG
2 wlkp1.i I=iEdgG
3 wlkp1.f φFunI
4 wlkp1.a φIFin
5 wlkp1.b φBW
6 wlkp1.c φCV
7 wlkp1.d φ¬BdomI
8 wlkp1.w φFWalksGP
9 wlkp1.n N=F
10 wlkp1.e φEEdgG
11 wlkp1.x φPNCE
12 wlkp1.u φiEdgS=IBE
13 wlkp1.h H=FNB
14 wlkp1.q Q=PN+1C
15 wlkp1.s φVtxS=V
16 wlkp1.l φC=PNE=C
17 2 wlkf FWalksGPFWorddomI
18 wrdf FWorddomIF:0..^FdomI
19 9 eqcomi F=N
20 19 oveq2i 0..^F=0..^N
21 20 feq2i F:0..^FdomIF:0..^NdomI
22 18 21 sylib FWorddomIF:0..^NdomI
23 8 17 22 3syl φF:0..^NdomI
24 9 fvexi NV
25 24 a1i φNV
26 snidg BWBB
27 5 26 syl φBB
28 dmsnopg EEdgGdomBE=B
29 10 28 syl φdomBE=B
30 27 29 eleqtrrd φBdomBE
31 25 30 fsnd φNB:NdomBE
32 fzodisjsn 0..^NN=
33 32 a1i φ0..^NN=
34 fun F:0..^NdomINB:NdomBE0..^NN=FNB:0..^NNdomIdomBE
35 23 31 33 34 syl21anc φFNB:0..^NNdomIdomBE
36 13 a1i φH=FNB
37 1 2 3 4 5 6 7 8 9 10 11 12 13 wlkp1lem2 φH=N+1
38 37 oveq2d φ0..^H=0..^N+1
39 wlkcl FWalksGPF0
40 eleq1 F=NF0N0
41 40 eqcoms N=FF0N0
42 elnn0uz N0N0
43 42 biimpi N0N0
44 41 43 syl6bi N=FF0N0
45 9 44 ax-mp F0N0
46 8 39 45 3syl φN0
47 fzosplitsn N00..^N+1=0..^NN
48 46 47 syl φ0..^N+1=0..^NN
49 38 48 eqtrd φ0..^H=0..^NN
50 12 dmeqd φdomiEdgS=domIBE
51 dmun domIBE=domIdomBE
52 50 51 eqtrdi φdomiEdgS=domIdomBE
53 36 49 52 feq123d φH:0..^HdomiEdgSFNB:0..^NNdomIdomBE
54 35 53 mpbird φH:0..^HdomiEdgS
55 iswrdb HWorddomiEdgSH:0..^HdomiEdgS
56 54 55 sylibr φHWorddomiEdgS
57 1 wlkp FWalksGPP:0FV
58 8 57 syl φP:0FV
59 9 oveq2i 0N=0F
60 59 feq2i P:0NVP:0FV
61 58 60 sylibr φP:0NV
62 ovexd φN+1V
63 62 6 fsnd φN+1C:N+1V
64 fzp1disj 0NN+1=
65 64 a1i φ0NN+1=
66 fun P:0NVN+1C:N+1V0NN+1=PN+1C:0NN+1VV
67 61 63 65 66 syl21anc φPN+1C:0NN+1VV
68 fzsuc N00N+1=0NN+1
69 46 68 syl φ0N+1=0NN+1
70 unidm VV=V
71 70 eqcomi V=VV
72 71 a1i φV=VV
73 69 72 feq23d φPN+1C:0N+1VPN+1C:0NN+1VV
74 67 73 mpbird φPN+1C:0N+1V
75 14 a1i φQ=PN+1C
76 37 oveq2d φ0H=0N+1
77 75 76 15 feq123d φQ:0HVtxSPN+1C:0N+1V
78 74 77 mpbird φQ:0HVtxS
79 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 wlkp1lem8 φk0..^Hif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHk
80 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 wlkp1lem4 φSVHVQV
81 eqid VtxS=VtxS
82 eqid iEdgS=iEdgS
83 81 82 iswlk SVHVQVHWalksSQHWorddomiEdgSQ:0HVtxSk0..^Hif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHk
84 80 83 syl φHWalksSQHWorddomiEdgSQ:0HVtxSk0..^Hif-Qk=Qk+1iEdgSHk=QkQkQk+1iEdgSHk
85 56 78 79 84 mpbir3and φHWalksSQ