Description: The mapping of (ordinary) walks to their sequences of vertices is a bijection in a simple pseudograph. (Contributed by AV, 6-May-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wlkswwlksf1o.f | |
|
Assertion | wlkswwlksf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkswwlksf1o.f | |
|
2 | fvex | |
|
3 | breq1 | |
|
4 | 2 3 | spcev | |
5 | wlkiswwlks | |
|
6 | 4 5 | imbitrid | |
7 | wlkcpr | |
|
8 | 7 | biimpi | |
9 | 6 8 | impel | |
10 | 9 1 | fmptd | |
11 | simpr | |
|
12 | fveq2 | |
|
13 | id | |
|
14 | fvexd | |
|
15 | 1 12 13 14 | fvmptd3 | |
16 | fveq2 | |
|
17 | id | |
|
18 | fvexd | |
|
19 | 1 16 17 18 | fvmptd3 | |
20 | 15 19 | eqeqan12d | |
21 | 20 | adantl | |
22 | uspgr2wlkeqi | |
|
23 | 22 | ad4ant134 | |
24 | 23 | ex | |
25 | 21 24 | sylbid | |
26 | 25 | ralrimivva | |
27 | dff13 | |
|
28 | 11 26 27 | sylanbrc | |
29 | wlkiswwlks | |
|
30 | 29 | adantr | |
31 | df-br | |
|
32 | vex | |
|
33 | vex | |
|
34 | 32 33 | op2nd | |
35 | 34 | eqcomi | |
36 | opex | |
|
37 | eleq1 | |
|
38 | fveq2 | |
|
39 | 38 | eqeq2d | |
40 | 37 39 | anbi12d | |
41 | 36 40 | spcev | |
42 | 35 41 | mpan2 | |
43 | 31 42 | sylbi | |
44 | 43 | exlimiv | |
45 | 30 44 | syl6bir | |
46 | 45 | imp | |
47 | df-rex | |
|
48 | 46 47 | sylibr | |
49 | 15 | eqeq2d | |
50 | 49 | rexbiia | |
51 | 48 50 | sylibr | |
52 | 51 | ralrimiva | |
53 | dffo3 | |
|
54 | 11 52 53 | sylanbrc | |
55 | df-f1o | |
|
56 | 28 54 55 | sylanbrc | |
57 | 10 56 | mpdan | |