Metamath Proof Explorer


Theorem wlkswwlksf1o

Description: The mapping of (ordinary) walks to their sequences of vertices is a bijection in a simple pseudograph. (Contributed by AV, 6-May-2021)

Ref Expression
Hypothesis wlkswwlksf1o.f F=wWalksG2ndw
Assertion wlkswwlksf1o GUSHGraphF:WalksG1-1 ontoWWalksG

Proof

Step Hyp Ref Expression
1 wlkswwlksf1o.f F=wWalksG2ndw
2 fvex 1stwV
3 breq1 f=1stwfWalksG2ndw1stwWalksG2ndw
4 2 3 spcev 1stwWalksG2ndwffWalksG2ndw
5 wlkiswwlks GUSHGraphffWalksG2ndw2ndwWWalksG
6 4 5 imbitrid GUSHGraph1stwWalksG2ndw2ndwWWalksG
7 wlkcpr wWalksG1stwWalksG2ndw
8 7 biimpi wWalksG1stwWalksG2ndw
9 6 8 impel GUSHGraphwWalksG2ndwWWalksG
10 9 1 fmptd GUSHGraphF:WalksGWWalksG
11 simpr GUSHGraphF:WalksGWWalksGF:WalksGWWalksG
12 fveq2 w=x2ndw=2ndx
13 id xWalksGxWalksG
14 fvexd xWalksG2ndxV
15 1 12 13 14 fvmptd3 xWalksGFx=2ndx
16 fveq2 w=y2ndw=2ndy
17 id yWalksGyWalksG
18 fvexd yWalksG2ndyV
19 1 16 17 18 fvmptd3 yWalksGFy=2ndy
20 15 19 eqeqan12d xWalksGyWalksGFx=Fy2ndx=2ndy
21 20 adantl GUSHGraphF:WalksGWWalksGxWalksGyWalksGFx=Fy2ndx=2ndy
22 uspgr2wlkeqi GUSHGraphxWalksGyWalksG2ndx=2ndyx=y
23 22 ad4ant134 GUSHGraphF:WalksGWWalksGxWalksGyWalksG2ndx=2ndyx=y
24 23 ex GUSHGraphF:WalksGWWalksGxWalksGyWalksG2ndx=2ndyx=y
25 21 24 sylbid GUSHGraphF:WalksGWWalksGxWalksGyWalksGFx=Fyx=y
26 25 ralrimivva GUSHGraphF:WalksGWWalksGxWalksGyWalksGFx=Fyx=y
27 dff13 F:WalksG1-1WWalksGF:WalksGWWalksGxWalksGyWalksGFx=Fyx=y
28 11 26 27 sylanbrc GUSHGraphF:WalksGWWalksGF:WalksG1-1WWalksG
29 wlkiswwlks GUSHGraphffWalksGyyWWalksG
30 29 adantr GUSHGraphF:WalksGWWalksGffWalksGyyWWalksG
31 df-br fWalksGyfyWalksG
32 vex fV
33 vex yV
34 32 33 op2nd 2ndfy=y
35 34 eqcomi y=2ndfy
36 opex fyV
37 eleq1 x=fyxWalksGfyWalksG
38 fveq2 x=fy2ndx=2ndfy
39 38 eqeq2d x=fyy=2ndxy=2ndfy
40 37 39 anbi12d x=fyxWalksGy=2ndxfyWalksGy=2ndfy
41 36 40 spcev fyWalksGy=2ndfyxxWalksGy=2ndx
42 35 41 mpan2 fyWalksGxxWalksGy=2ndx
43 31 42 sylbi fWalksGyxxWalksGy=2ndx
44 43 exlimiv ffWalksGyxxWalksGy=2ndx
45 30 44 syl6bir GUSHGraphF:WalksGWWalksGyWWalksGxxWalksGy=2ndx
46 45 imp GUSHGraphF:WalksGWWalksGyWWalksGxxWalksGy=2ndx
47 df-rex xWalksGy=2ndxxxWalksGy=2ndx
48 46 47 sylibr GUSHGraphF:WalksGWWalksGyWWalksGxWalksGy=2ndx
49 15 eqeq2d xWalksGy=Fxy=2ndx
50 49 rexbiia xWalksGy=FxxWalksGy=2ndx
51 48 50 sylibr GUSHGraphF:WalksGWWalksGyWWalksGxWalksGy=Fx
52 51 ralrimiva GUSHGraphF:WalksGWWalksGyWWalksGxWalksGy=Fx
53 dffo3 F:WalksGontoWWalksGF:WalksGWWalksGyWWalksGxWalksGy=Fx
54 11 52 53 sylanbrc GUSHGraphF:WalksGWWalksGF:WalksGontoWWalksG
55 df-f1o F:WalksG1-1 ontoWWalksGF:WalksG1-1WWalksGF:WalksGontoWWalksG
56 28 54 55 sylanbrc GUSHGraphF:WalksGWWalksGF:WalksG1-1 ontoWWalksG
57 10 56 mpdan GUSHGraphF:WalksG1-1 ontoWWalksG