| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xkoco2cn.r |
|
| 2 |
|
xkoco2cn.f |
|
| 3 |
|
simpr |
|
| 4 |
2
|
adantr |
|
| 5 |
|
cnco |
|
| 6 |
3 4 5
|
syl2anc |
|
| 7 |
6
|
fmpttd |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
8 9 10
|
xkobval |
|
| 12 |
11
|
eqabri |
|
| 13 |
|
simpr |
|
| 14 |
2
|
ad3antrrr |
|
| 15 |
13 14 5
|
syl2anc |
|
| 16 |
|
imaeq1 |
|
| 17 |
|
imaco |
|
| 18 |
16 17
|
eqtrdi |
|
| 19 |
18
|
sseq1d |
|
| 20 |
19
|
elrab3 |
|
| 21 |
15 20
|
syl |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
22 23
|
cnf |
|
| 25 |
2 24
|
syl |
|
| 26 |
25
|
ad3antrrr |
|
| 27 |
26
|
ffund |
|
| 28 |
|
imassrn |
|
| 29 |
8 22
|
cnf |
|
| 30 |
13 29
|
syl |
|
| 31 |
30
|
frnd |
|
| 32 |
28 31
|
sstrid |
|
| 33 |
26
|
fdmd |
|
| 34 |
32 33
|
sseqtrrd |
|
| 35 |
|
funimass3 |
|
| 36 |
27 34 35
|
syl2anc |
|
| 37 |
21 36
|
bitrd |
|
| 38 |
37
|
rabbidva |
|
| 39 |
1
|
ad2antrr |
|
| 40 |
|
cntop1 |
|
| 41 |
2 40
|
syl |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
|
simplrl |
|
| 44 |
43
|
elpwid |
|
| 45 |
|
simpr |
|
| 46 |
2
|
ad2antrr |
|
| 47 |
|
simplrr |
|
| 48 |
|
cnima |
|
| 49 |
46 47 48
|
syl2anc |
|
| 50 |
8 39 42 44 45 49
|
xkoopn |
|
| 51 |
38 50
|
eqeltrd |
|
| 52 |
|
imaeq2 |
|
| 53 |
|
eqid |
|
| 54 |
53
|
mptpreima |
|
| 55 |
52 54
|
eqtrdi |
|
| 56 |
55
|
eleq1d |
|
| 57 |
51 56
|
syl5ibrcom |
|
| 58 |
57
|
expimpd |
|
| 59 |
58
|
rexlimdvva |
|
| 60 |
12 59
|
biimtrid |
|
| 61 |
60
|
ralrimiv |
|
| 62 |
|
eqid |
|
| 63 |
62
|
xkotopon |
|
| 64 |
1 41 63
|
syl2anc |
|
| 65 |
|
ovex |
|
| 66 |
65
|
pwex |
|
| 67 |
8 9 10
|
xkotf |
|
| 68 |
|
frn |
|
| 69 |
67 68
|
ax-mp |
|
| 70 |
66 69
|
ssexi |
|
| 71 |
70
|
a1i |
|
| 72 |
|
cntop2 |
|
| 73 |
2 72
|
syl |
|
| 74 |
8 9 10
|
xkoval |
|
| 75 |
1 73 74
|
syl2anc |
|
| 76 |
|
eqid |
|
| 77 |
76
|
xkotopon |
|
| 78 |
1 73 77
|
syl2anc |
|
| 79 |
64 71 75 78
|
subbascn |
|
| 80 |
7 61 79
|
mpbir2and |
|