| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xaddcl |  | 
						
							| 2 | 1 | 3ad2ant1 |  | 
						
							| 3 | 2 | adantr |  | 
						
							| 4 |  | simp1l |  | 
						
							| 5 |  | simp2r |  | 
						
							| 6 |  | xaddcl |  | 
						
							| 7 | 4 5 6 | syl2anc |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | xaddcl |  | 
						
							| 10 | 9 | 3ad2ant2 |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 |  | simp3r |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | simp1r |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 | 5 | adantr |  | 
						
							| 17 |  | simprl |  | 
						
							| 18 |  | xltadd2 |  | 
						
							| 19 | 15 16 17 18 | syl3anc |  | 
						
							| 20 | 13 19 | mpbid |  | 
						
							| 21 |  | simp3l |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 | 4 | adantr |  | 
						
							| 24 |  | simp2l |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 |  | simprr |  | 
						
							| 27 |  | xltadd1 |  | 
						
							| 28 | 23 25 26 27 | syl3anc |  | 
						
							| 29 | 22 28 | mpbid |  | 
						
							| 30 | 3 8 11 20 29 | xrlttrd |  | 
						
							| 31 | 30 | anassrs |  | 
						
							| 32 |  | pnfxr |  | 
						
							| 33 | 32 | a1i |  | 
						
							| 34 |  | pnfge |  | 
						
							| 35 | 24 34 | syl |  | 
						
							| 36 | 4 24 33 21 35 | xrltletrd |  | 
						
							| 37 |  | nltpnft |  | 
						
							| 38 | 37 | necon2abid |  | 
						
							| 39 | 4 38 | syl |  | 
						
							| 40 | 36 39 | mpbid |  | 
						
							| 41 |  | pnfge |  | 
						
							| 42 | 5 41 | syl |  | 
						
							| 43 | 14 5 33 12 42 | xrltletrd |  | 
						
							| 44 |  | nltpnft |  | 
						
							| 45 | 44 | necon2abid |  | 
						
							| 46 | 14 45 | syl |  | 
						
							| 47 | 43 46 | mpbid |  | 
						
							| 48 |  | xaddnepnf |  | 
						
							| 49 | 4 40 14 47 48 | syl22anc |  | 
						
							| 50 |  | nltpnft |  | 
						
							| 51 | 50 | necon2abid |  | 
						
							| 52 | 2 51 | syl |  | 
						
							| 53 | 49 52 | mpbird |  | 
						
							| 54 | 53 | adantr |  | 
						
							| 55 |  | oveq2 |  | 
						
							| 56 |  | mnfxr |  | 
						
							| 57 | 56 | a1i |  | 
						
							| 58 |  | mnfle |  | 
						
							| 59 | 4 58 | syl |  | 
						
							| 60 | 57 4 24 59 21 | xrlelttrd |  | 
						
							| 61 |  | ngtmnft |  | 
						
							| 62 | 61 | necon2abid |  | 
						
							| 63 | 24 62 | syl |  | 
						
							| 64 | 60 63 | mpbid |  | 
						
							| 65 |  | xaddpnf1 |  | 
						
							| 66 | 24 64 65 | syl2anc |  | 
						
							| 67 | 55 66 | sylan9eqr |  | 
						
							| 68 | 54 67 | breqtrrd |  | 
						
							| 69 | 68 | adantlr |  | 
						
							| 70 |  | mnfle |  | 
						
							| 71 | 14 70 | syl |  | 
						
							| 72 | 57 14 5 71 12 | xrlelttrd |  | 
						
							| 73 |  | ngtmnft |  | 
						
							| 74 | 73 | necon2abid |  | 
						
							| 75 | 5 74 | syl |  | 
						
							| 76 | 72 75 | mpbid |  | 
						
							| 77 | 76 | a1d |  | 
						
							| 78 | 77 | necon4bd |  | 
						
							| 79 | 78 | imp |  | 
						
							| 80 | 79 | adantlr |  | 
						
							| 81 |  | elxr |  | 
						
							| 82 | 5 81 | sylib |  | 
						
							| 83 | 82 | adantr |  | 
						
							| 84 | 31 69 80 83 | mpjao3dan |  | 
						
							| 85 | 40 | a1d |  | 
						
							| 86 | 85 | necon4bd |  | 
						
							| 87 | 86 | imp |  | 
						
							| 88 |  | oveq1 |  | 
						
							| 89 |  | xaddmnf2 |  | 
						
							| 90 | 14 47 89 | syl2anc |  | 
						
							| 91 | 88 90 | sylan9eqr |  | 
						
							| 92 |  | xaddnemnf |  | 
						
							| 93 | 24 64 5 76 92 | syl22anc |  | 
						
							| 94 |  | ngtmnft |  | 
						
							| 95 | 94 | necon2abid |  | 
						
							| 96 | 10 95 | syl |  | 
						
							| 97 | 93 96 | mpbird |  | 
						
							| 98 | 97 | adantr |  | 
						
							| 99 | 91 98 | eqbrtrd |  | 
						
							| 100 |  | elxr |  | 
						
							| 101 | 4 100 | sylib |  | 
						
							| 102 | 84 87 99 101 | mpjao3dan |  | 
						
							| 103 | 102 | 3expia |  |