Metamath Proof Explorer


Theorem xov1plusxeqvd

Description: A complex number X is positive real iff X / ( 1 + X ) is in ( 0 (,) 1 ) . Deduction form. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses xov1plusxeqvd.1 φ X
xov1plusxeqvd.2 φ X 1
Assertion xov1plusxeqvd φ X + X 1 + X 0 1

Proof

Step Hyp Ref Expression
1 xov1plusxeqvd.1 φ X
2 xov1plusxeqvd.2 φ X 1
3 simpr φ X + X +
4 3 rpred φ X + X
5 1rp 1 +
6 5 a1i φ X + 1 +
7 6 3 rpaddcld φ X + 1 + X +
8 4 7 rerpdivcld φ X + X 1 + X
9 7 rprecred φ X + 1 1 + X
10 1red φ X + 1
11 0red φ X + 0
12 10 4 readdcld φ X + 1 + X
13 10 3 ltaddrpd φ X + 1 < 1 + X
14 recgt1i 1 + X 1 < 1 + X 0 < 1 1 + X 1 1 + X < 1
15 12 13 14 syl2anc φ X + 0 < 1 1 + X 1 1 + X < 1
16 15 simprd φ X + 1 1 + X < 1
17 1m0e1 1 0 = 1
18 16 17 breqtrrdi φ X + 1 1 + X < 1 0
19 9 10 11 18 ltsub13d φ X + 0 < 1 1 1 + X
20 1cnd φ 1
21 20 1 addcld φ 1 + X
22 20 negcld φ 1
23 20 1 22 2 addneintrd φ 1 + X 1 + -1
24 1pneg1e0 1 + -1 = 0
25 24 a1i φ 1 + -1 = 0
26 23 25 neeqtrd φ 1 + X 0
27 21 20 21 26 divsubdird φ 1 + X - 1 1 + X = 1 + X 1 + X 1 1 + X
28 20 1 pncan2d φ 1 + X - 1 = X
29 28 oveq1d φ 1 + X - 1 1 + X = X 1 + X
30 21 26 dividd φ 1 + X 1 + X = 1
31 30 oveq1d φ 1 + X 1 + X 1 1 + X = 1 1 1 + X
32 27 29 31 3eqtr3d φ X 1 + X = 1 1 1 + X
33 32 adantr φ X + X 1 + X = 1 1 1 + X
34 19 33 breqtrrd φ X + 0 < X 1 + X
35 1m1e0 1 1 = 0
36 15 simpld φ X + 0 < 1 1 + X
37 35 36 eqbrtrid φ X + 1 1 < 1 1 + X
38 10 10 9 37 ltsub23d φ X + 1 1 1 + X < 1
39 33 38 eqbrtrd φ X + X 1 + X < 1
40 0xr 0 *
41 1xr 1 *
42 elioo2 0 * 1 * X 1 + X 0 1 X 1 + X 0 < X 1 + X X 1 + X < 1
43 40 41 42 mp2an X 1 + X 0 1 X 1 + X 0 < X 1 + X X 1 + X < 1
44 8 34 39 43 syl3anbrc φ X + X 1 + X 0 1
45 28 adantr φ X 1 + X 0 1 1 + X - 1 = X
46 21 adantr φ X 1 + X 0 1 1 + X
47 26 adantr φ X 1 + X 0 1 1 + X 0
48 46 47 recrecd φ X 1 + X 0 1 1 1 1 + X = 1 + X
49 21 1 21 26 divsubdird φ 1 + X - X 1 + X = 1 + X 1 + X X 1 + X
50 20 1 pncand φ 1 + X - X = 1
51 50 oveq1d φ 1 + X - X 1 + X = 1 1 + X
52 30 oveq1d φ 1 + X 1 + X X 1 + X = 1 X 1 + X
53 49 51 52 3eqtr3d φ 1 1 + X = 1 X 1 + X
54 53 adantr φ X 1 + X 0 1 1 1 + X = 1 X 1 + X
55 1red φ X 1 + X 0 1 1
56 simpr φ X 1 + X 0 1 X 1 + X 0 1
57 56 43 sylib φ X 1 + X 0 1 X 1 + X 0 < X 1 + X X 1 + X < 1
58 57 simp1d φ X 1 + X 0 1 X 1 + X
59 55 58 resubcld φ X 1 + X 0 1 1 X 1 + X
60 54 59 eqeltrd φ X 1 + X 0 1 1 1 + X
61 0red φ X 1 + X 0 1 0
62 57 simp3d φ X 1 + X 0 1 X 1 + X < 1
63 62 17 breqtrrdi φ X 1 + X 0 1 X 1 + X < 1 0
64 58 55 61 63 ltsub13d φ X 1 + X 0 1 0 < 1 X 1 + X
65 64 54 breqtrrd φ X 1 + X 0 1 0 < 1 1 + X
66 60 65 elrpd φ X 1 + X 0 1 1 1 + X +
67 66 rprecred φ X 1 + X 0 1 1 1 1 + X
68 48 67 eqeltrrd φ X 1 + X 0 1 1 + X
69 68 55 resubcld φ X 1 + X 0 1 1 + X - 1
70 45 69 eqeltrrd φ X 1 + X 0 1 X
71 1p0e1 1 + 0 = 1
72 57 simp2d φ X 1 + X 0 1 0 < X 1 + X
73 35 72 eqbrtrid φ X 1 + X 0 1 1 1 < X 1 + X
74 55 55 58 73 ltsub23d φ X 1 + X 0 1 1 X 1 + X < 1
75 54 74 eqbrtrd φ X 1 + X 0 1 1 1 + X < 1
76 66 reclt1d φ X 1 + X 0 1 1 1 + X < 1 1 < 1 1 1 + X
77 75 76 mpbid φ X 1 + X 0 1 1 < 1 1 1 + X
78 77 48 breqtrd φ X 1 + X 0 1 1 < 1 + X
79 71 78 eqbrtrid φ X 1 + X 0 1 1 + 0 < 1 + X
80 61 70 55 ltadd2d φ X 1 + X 0 1 0 < X 1 + 0 < 1 + X
81 79 80 mpbird φ X 1 + X 0 1 0 < X
82 70 81 elrpd φ X 1 + X 0 1 X +
83 44 82 impbida φ X + X 1 + X 0 1