Metamath Proof Explorer


Theorem xpsmnd0

Description: The identity element of a binary product of monoids. (Contributed by AV, 25-Feb-2025)

Ref Expression
Hypothesis xpsmnd0.t T=R×𝑠S
Assertion xpsmnd0 RMndSMnd0T=0R0S

Proof

Step Hyp Ref Expression
1 xpsmnd0.t T=R×𝑠S
2 eqid BaseT=BaseT
3 eqid 0T=0T
4 eqid +T=+T
5 eqid BaseR=BaseR
6 eqid 0R=0R
7 5 6 mndidcl RMnd0RBaseR
8 7 adantr RMndSMnd0RBaseR
9 eqid BaseS=BaseS
10 eqid 0S=0S
11 9 10 mndidcl SMnd0SBaseS
12 11 adantl RMndSMnd0SBaseS
13 8 12 opelxpd RMndSMnd0R0SBaseR×BaseS
14 simpl RMndSMndRMnd
15 simpr RMndSMndSMnd
16 1 5 9 14 15 xpsbas RMndSMndBaseR×BaseS=BaseT
17 13 16 eleqtrd RMndSMnd0R0SBaseT
18 16 eleq2d RMndSMndxBaseR×BaseSxBaseT
19 elxp2 xBaseR×BaseSaBaseRbBaseSx=ab
20 14 adantr RMndSMndaBaseRbBaseSRMnd
21 15 adantr RMndSMndaBaseRbBaseSSMnd
22 8 adantr RMndSMndaBaseRbBaseS0RBaseR
23 12 adantr RMndSMndaBaseRbBaseS0SBaseS
24 simpl aBaseRbBaseSaBaseR
25 24 adantl RMndSMndaBaseRbBaseSaBaseR
26 simpr aBaseRbBaseSbBaseS
27 26 adantl RMndSMndaBaseRbBaseSbBaseS
28 eqid +R=+R
29 5 28 mndcl RMnd0RBaseRaBaseR0R+RaBaseR
30 20 22 25 29 syl3anc RMndSMndaBaseRbBaseS0R+RaBaseR
31 eqid +S=+S
32 9 31 mndcl SMnd0SBaseSbBaseS0S+SbBaseS
33 21 23 27 32 syl3anc RMndSMndaBaseRbBaseS0S+SbBaseS
34 1 5 9 20 21 22 23 25 27 30 33 28 31 4 xpsadd RMndSMndaBaseRbBaseS0R0S+Tab=0R+Ra0S+Sb
35 5 28 6 mndlid RMndaBaseR0R+Ra=a
36 14 24 35 syl2an RMndSMndaBaseRbBaseS0R+Ra=a
37 9 31 10 mndlid SMndbBaseS0S+Sb=b
38 15 26 37 syl2an RMndSMndaBaseRbBaseS0S+Sb=b
39 36 38 opeq12d RMndSMndaBaseRbBaseS0R+Ra0S+Sb=ab
40 34 39 eqtrd RMndSMndaBaseRbBaseS0R0S+Tab=ab
41 oveq2 x=ab0R0S+Tx=0R0S+Tab
42 id x=abx=ab
43 41 42 eqeq12d x=ab0R0S+Tx=x0R0S+Tab=ab
44 40 43 syl5ibrcom RMndSMndaBaseRbBaseSx=ab0R0S+Tx=x
45 44 rexlimdvva RMndSMndaBaseRbBaseSx=ab0R0S+Tx=x
46 19 45 biimtrid RMndSMndxBaseR×BaseS0R0S+Tx=x
47 18 46 sylbird RMndSMndxBaseT0R0S+Tx=x
48 47 imp RMndSMndxBaseT0R0S+Tx=x
49 5 28 mndcl RMndaBaseR0RBaseRa+R0RBaseR
50 20 25 22 49 syl3anc RMndSMndaBaseRbBaseSa+R0RBaseR
51 9 31 mndcl SMndbBaseS0SBaseSb+S0SBaseS
52 21 27 23 51 syl3anc RMndSMndaBaseRbBaseSb+S0SBaseS
53 1 5 9 20 21 25 27 22 23 50 52 28 31 4 xpsadd RMndSMndaBaseRbBaseSab+T0R0S=a+R0Rb+S0S
54 5 28 6 mndrid RMndaBaseRa+R0R=a
55 14 24 54 syl2an RMndSMndaBaseRbBaseSa+R0R=a
56 9 31 10 mndrid SMndbBaseSb+S0S=b
57 15 26 56 syl2an RMndSMndaBaseRbBaseSb+S0S=b
58 55 57 opeq12d RMndSMndaBaseRbBaseSa+R0Rb+S0S=ab
59 53 58 eqtrd RMndSMndaBaseRbBaseSab+T0R0S=ab
60 oveq1 x=abx+T0R0S=ab+T0R0S
61 60 42 eqeq12d x=abx+T0R0S=xab+T0R0S=ab
62 59 61 syl5ibrcom RMndSMndaBaseRbBaseSx=abx+T0R0S=x
63 62 rexlimdvva RMndSMndaBaseRbBaseSx=abx+T0R0S=x
64 19 63 biimtrid RMndSMndxBaseR×BaseSx+T0R0S=x
65 18 64 sylbird RMndSMndxBaseTx+T0R0S=x
66 65 imp RMndSMndxBaseTx+T0R0S=x
67 2 3 4 17 48 66 ismgmid2 RMndSMnd0R0S=0T
68 67 eqcomd RMndSMnd0T=0R0S