Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Definition and basic properties of monoids
xpsmnd0
Next ⟩
mnd1
Metamath Proof Explorer
Ascii
Unicode
Theorem
xpsmnd0
Description:
The identity element of a binary product of monoids.
(Contributed by
AV
, 25-Feb-2025)
Ref
Expression
Hypothesis
xpsmnd0.t
⊢
T
=
R
×
𝑠
S
Assertion
xpsmnd0
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
0
T
=
0
R
0
S
Proof
Step
Hyp
Ref
Expression
1
xpsmnd0.t
⊢
T
=
R
×
𝑠
S
2
eqid
⊢
Base
T
=
Base
T
3
eqid
⊢
0
T
=
0
T
4
eqid
⊢
+
T
=
+
T
5
eqid
⊢
Base
R
=
Base
R
6
eqid
⊢
0
R
=
0
R
7
5
6
mndidcl
⊢
R
∈
Mnd
→
0
R
∈
Base
R
8
7
adantr
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
0
R
∈
Base
R
9
eqid
⊢
Base
S
=
Base
S
10
eqid
⊢
0
S
=
0
S
11
9
10
mndidcl
⊢
S
∈
Mnd
→
0
S
∈
Base
S
12
11
adantl
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
0
S
∈
Base
S
13
8
12
opelxpd
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
0
R
0
S
∈
Base
R
×
Base
S
14
simpl
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
R
∈
Mnd
15
simpr
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
S
∈
Mnd
16
1
5
9
14
15
xpsbas
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
Base
R
×
Base
S
=
Base
T
17
13
16
eleqtrd
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
0
R
0
S
∈
Base
T
18
16
eleq2d
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
x
∈
Base
R
×
Base
S
↔
x
∈
Base
T
19
elxp2
⊢
x
∈
Base
R
×
Base
S
↔
∃
a
∈
Base
R
∃
b
∈
Base
S
x
=
a
b
20
14
adantr
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
R
∈
Mnd
21
15
adantr
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
S
∈
Mnd
22
8
adantr
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
0
R
∈
Base
R
23
12
adantr
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
0
S
∈
Base
S
24
simpl
⊢
a
∈
Base
R
∧
b
∈
Base
S
→
a
∈
Base
R
25
24
adantl
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
a
∈
Base
R
26
simpr
⊢
a
∈
Base
R
∧
b
∈
Base
S
→
b
∈
Base
S
27
26
adantl
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
b
∈
Base
S
28
eqid
⊢
+
R
=
+
R
29
5
28
mndcl
⊢
R
∈
Mnd
∧
0
R
∈
Base
R
∧
a
∈
Base
R
→
0
R
+
R
a
∈
Base
R
30
20
22
25
29
syl3anc
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
0
R
+
R
a
∈
Base
R
31
eqid
⊢
+
S
=
+
S
32
9
31
mndcl
⊢
S
∈
Mnd
∧
0
S
∈
Base
S
∧
b
∈
Base
S
→
0
S
+
S
b
∈
Base
S
33
21
23
27
32
syl3anc
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
0
S
+
S
b
∈
Base
S
34
1
5
9
20
21
22
23
25
27
30
33
28
31
4
xpsadd
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
0
R
0
S
+
T
a
b
=
0
R
+
R
a
0
S
+
S
b
35
5
28
6
mndlid
⊢
R
∈
Mnd
∧
a
∈
Base
R
→
0
R
+
R
a
=
a
36
14
24
35
syl2an
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
0
R
+
R
a
=
a
37
9
31
10
mndlid
⊢
S
∈
Mnd
∧
b
∈
Base
S
→
0
S
+
S
b
=
b
38
15
26
37
syl2an
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
0
S
+
S
b
=
b
39
36
38
opeq12d
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
0
R
+
R
a
0
S
+
S
b
=
a
b
40
34
39
eqtrd
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
0
R
0
S
+
T
a
b
=
a
b
41
oveq2
⊢
x
=
a
b
→
0
R
0
S
+
T
x
=
0
R
0
S
+
T
a
b
42
id
⊢
x
=
a
b
→
x
=
a
b
43
41
42
eqeq12d
⊢
x
=
a
b
→
0
R
0
S
+
T
x
=
x
↔
0
R
0
S
+
T
a
b
=
a
b
44
40
43
syl5ibrcom
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
x
=
a
b
→
0
R
0
S
+
T
x
=
x
45
44
rexlimdvva
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
∃
a
∈
Base
R
∃
b
∈
Base
S
x
=
a
b
→
0
R
0
S
+
T
x
=
x
46
19
45
biimtrid
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
x
∈
Base
R
×
Base
S
→
0
R
0
S
+
T
x
=
x
47
18
46
sylbird
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
x
∈
Base
T
→
0
R
0
S
+
T
x
=
x
48
47
imp
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
x
∈
Base
T
→
0
R
0
S
+
T
x
=
x
49
5
28
mndcl
⊢
R
∈
Mnd
∧
a
∈
Base
R
∧
0
R
∈
Base
R
→
a
+
R
0
R
∈
Base
R
50
20
25
22
49
syl3anc
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
a
+
R
0
R
∈
Base
R
51
9
31
mndcl
⊢
S
∈
Mnd
∧
b
∈
Base
S
∧
0
S
∈
Base
S
→
b
+
S
0
S
∈
Base
S
52
21
27
23
51
syl3anc
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
b
+
S
0
S
∈
Base
S
53
1
5
9
20
21
25
27
22
23
50
52
28
31
4
xpsadd
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
a
b
+
T
0
R
0
S
=
a
+
R
0
R
b
+
S
0
S
54
5
28
6
mndrid
⊢
R
∈
Mnd
∧
a
∈
Base
R
→
a
+
R
0
R
=
a
55
14
24
54
syl2an
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
a
+
R
0
R
=
a
56
9
31
10
mndrid
⊢
S
∈
Mnd
∧
b
∈
Base
S
→
b
+
S
0
S
=
b
57
15
26
56
syl2an
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
b
+
S
0
S
=
b
58
55
57
opeq12d
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
a
+
R
0
R
b
+
S
0
S
=
a
b
59
53
58
eqtrd
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
a
b
+
T
0
R
0
S
=
a
b
60
oveq1
⊢
x
=
a
b
→
x
+
T
0
R
0
S
=
a
b
+
T
0
R
0
S
61
60
42
eqeq12d
⊢
x
=
a
b
→
x
+
T
0
R
0
S
=
x
↔
a
b
+
T
0
R
0
S
=
a
b
62
59
61
syl5ibrcom
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
a
∈
Base
R
∧
b
∈
Base
S
→
x
=
a
b
→
x
+
T
0
R
0
S
=
x
63
62
rexlimdvva
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
∃
a
∈
Base
R
∃
b
∈
Base
S
x
=
a
b
→
x
+
T
0
R
0
S
=
x
64
19
63
biimtrid
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
x
∈
Base
R
×
Base
S
→
x
+
T
0
R
0
S
=
x
65
18
64
sylbird
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
x
∈
Base
T
→
x
+
T
0
R
0
S
=
x
66
65
imp
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
x
∈
Base
T
→
x
+
T
0
R
0
S
=
x
67
2
3
4
17
48
66
ismgmid2
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
0
R
0
S
=
0
T
68
67
eqcomd
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
0
T
=
0
R
0
S