Description: Weak dominance of a Cartesian product. (Contributed by Stefan O'Rear, 13-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xpwdomg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brwdom3i | |
|
2 | 1 | adantr | |
3 | brwdom3i | |
|
4 | 3 | adantl | |
5 | relwdom | |
|
6 | 5 | brrelex1i | |
7 | 5 | brrelex1i | |
8 | xpexg | |
|
9 | 6 7 8 | syl2an | |
10 | 9 | adantr | |
11 | 5 | brrelex2i | |
12 | 5 | brrelex2i | |
13 | xpexg | |
|
14 | 11 12 13 | syl2an | |
15 | 14 | adantr | |
16 | pm3.2 | |
|
17 | 16 | ralimdv | |
18 | 17 | com12 | |
19 | 18 | ralimdv | |
20 | 19 | impcom | |
21 | pm3.2 | |
|
22 | 21 | reximdv | |
23 | 22 | com12 | |
24 | 23 | reximdv | |
25 | 24 | impcom | |
26 | 25 | 2ralimi | |
27 | 20 26 | syl | |
28 | eqeq1 | |
|
29 | vex | |
|
30 | vex | |
|
31 | 29 30 | opth | |
32 | 28 31 | bitrdi | |
33 | 32 | 2rexbidv | |
34 | 33 | ralxp | |
35 | 27 34 | sylibr | |
36 | 35 | r19.21bi | |
37 | vex | |
|
38 | vex | |
|
39 | 37 38 | op1std | |
40 | 39 | fveq2d | |
41 | 37 38 | op2ndd | |
42 | 41 | fveq2d | |
43 | 40 42 | opeq12d | |
44 | 43 | eqeq2d | |
45 | 44 | rexxp | |
46 | 36 45 | sylibr | |
47 | 46 | adantll | |
48 | 10 15 47 | wdom2d | |
49 | 48 | expr | |
50 | 49 | exlimdv | |
51 | 50 | ex | |
52 | 51 | exlimdv | |
53 | 2 4 52 | mp2d | |