Metamath Proof Explorer


Theorem xralrple

Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Assertion xralrple A*BABx+AB+x

Proof

Step Hyp Ref Expression
1 rpge0 x+0x
2 1 adantl A*Bx+0x
3 simplr A*Bx+B
4 rpre x+x
5 4 adantl A*Bx+x
6 3 5 addge01d A*Bx+0xBB+x
7 2 6 mpbid A*Bx+BB+x
8 simpll A*Bx+A*
9 3 rexrd A*Bx+B*
10 3 5 readdcld A*Bx+B+x
11 10 rexrd A*Bx+B+x*
12 xrletr A*B*B+x*ABBB+xAB+x
13 8 9 11 12 syl3anc A*Bx+ABBB+xAB+x
14 7 13 mpan2d A*Bx+ABAB+x
15 14 ralrimdva A*BABx+AB+x
16 rexr BB*
17 16 adantl A*BB*
18 simpl A*BA*
19 qbtwnxr B*A*B<AyB<yy<A
20 19 3expia B*A*B<AyB<yy<A
21 17 18 20 syl2anc A*BB<AyB<yy<A
22 simprrl A*ByB<yy<AB<y
23 simplr A*ByB<yy<AB
24 qre yy
25 24 ad2antrl A*ByB<yy<Ay
26 difrp ByB<yyB+
27 23 25 26 syl2anc A*ByB<yy<AB<yyB+
28 22 27 mpbid A*ByB<yy<AyB+
29 simprrr A*ByB<yy<Ay<A
30 25 rexrd A*ByB<yy<Ay*
31 simpll A*ByB<yy<AA*
32 xrltnle y*A*y<A¬Ay
33 30 31 32 syl2anc A*ByB<yy<Ay<A¬Ay
34 29 33 mpbid A*ByB<yy<A¬Ay
35 23 recnd A*ByB<yy<AB
36 25 recnd A*ByB<yy<Ay
37 35 36 pncan3d A*ByB<yy<AB+y-B=y
38 37 breq2d A*ByB<yy<AAB+y-BAy
39 34 38 mtbird A*ByB<yy<A¬AB+y-B
40 oveq2 x=yBB+x=B+y-B
41 40 breq2d x=yBAB+xAB+y-B
42 41 notbid x=yB¬AB+x¬AB+y-B
43 42 rspcev yB+¬AB+y-Bx+¬AB+x
44 28 39 43 syl2anc A*ByB<yy<Ax+¬AB+x
45 rexnal x+¬AB+x¬x+AB+x
46 44 45 sylib A*ByB<yy<A¬x+AB+x
47 46 rexlimdvaa A*ByB<yy<A¬x+AB+x
48 21 47 syld A*BB<A¬x+AB+x
49 48 con2d A*Bx+AB+x¬B<A
50 xrlenlt A*B*AB¬B<A
51 16 50 sylan2 A*BAB¬B<A
52 49 51 sylibrd A*Bx+AB+xAB
53 15 52 impbid A*BABx+AB+x