Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | xralrple | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpge0 | |
|
2 | 1 | adantl | |
3 | simplr | |
|
4 | rpre | |
|
5 | 4 | adantl | |
6 | 3 5 | addge01d | |
7 | 2 6 | mpbid | |
8 | simpll | |
|
9 | 3 | rexrd | |
10 | 3 5 | readdcld | |
11 | 10 | rexrd | |
12 | xrletr | |
|
13 | 8 9 11 12 | syl3anc | |
14 | 7 13 | mpan2d | |
15 | 14 | ralrimdva | |
16 | rexr | |
|
17 | 16 | adantl | |
18 | simpl | |
|
19 | qbtwnxr | |
|
20 | 19 | 3expia | |
21 | 17 18 20 | syl2anc | |
22 | simprrl | |
|
23 | simplr | |
|
24 | qre | |
|
25 | 24 | ad2antrl | |
26 | difrp | |
|
27 | 23 25 26 | syl2anc | |
28 | 22 27 | mpbid | |
29 | simprrr | |
|
30 | 25 | rexrd | |
31 | simpll | |
|
32 | xrltnle | |
|
33 | 30 31 32 | syl2anc | |
34 | 29 33 | mpbid | |
35 | 23 | recnd | |
36 | 25 | recnd | |
37 | 35 36 | pncan3d | |
38 | 37 | breq2d | |
39 | 34 38 | mtbird | |
40 | oveq2 | |
|
41 | 40 | breq2d | |
42 | 41 | notbid | |
43 | 42 | rspcev | |
44 | 28 39 43 | syl2anc | |
45 | rexnal | |
|
46 | 44 45 | sylib | |
47 | 46 | rexlimdvaa | |
48 | 21 47 | syld | |
49 | 48 | con2d | |
50 | xrlenlt | |
|
51 | 16 50 | sylan2 | |
52 | 49 51 | sylibrd | |
53 | 15 52 | impbid | |