Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xralrple4.a | |
|
xralrple4.b | |
||
xralrple4.n | |
||
Assertion | xralrple4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xralrple4.a | |
|
2 | xralrple4.b | |
|
3 | xralrple4.n | |
|
4 | 1 | ad2antrr | |
5 | 2 | rexrd | |
6 | 5 | ad2antrr | |
7 | 2 | ad2antrr | |
8 | rpre | |
|
9 | 8 | adantl | |
10 | 3 | nnnn0d | |
11 | 10 | adantr | |
12 | 9 11 | reexpcld | |
13 | 12 | adantlr | |
14 | 7 13 | readdcld | |
15 | 14 | rexrd | |
16 | simplr | |
|
17 | rpge0 | |
|
18 | 17 | adantl | |
19 | 9 11 18 | expge0d | |
20 | 2 | adantr | |
21 | 20 12 | addge01d | |
22 | 19 21 | mpbid | |
23 | 22 | adantlr | |
24 | 4 6 15 16 23 | xrletrd | |
25 | 24 | ralrimiva | |
26 | 25 | ex | |
27 | simpr | |
|
28 | 3 | nnrpd | |
29 | 28 | rpreccld | |
30 | 29 | rpred | |
31 | 30 | adantr | |
32 | 27 31 | rpcxpcld | |
33 | 32 | adantlr | |
34 | simplr | |
|
35 | oveq1 | |
|
36 | 35 | oveq2d | |
37 | 36 | breq2d | |
38 | 37 | rspcva | |
39 | 33 34 38 | syl2anc | |
40 | 27 | rpcnd | |
41 | 3 | adantr | |
42 | cxproot | |
|
43 | 40 41 42 | syl2anc | |
44 | 43 | oveq2d | |
45 | 44 | adantlr | |
46 | 39 45 | breqtrd | |
47 | 46 | ralrimiva | |
48 | xralrple | |
|
49 | 1 2 48 | syl2anc | |
50 | 49 | adantr | |
51 | 47 50 | mpbird | |
52 | 51 | ex | |
53 | 26 52 | impbid | |