Metamath Proof Explorer


Theorem xralrple4

Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses xralrple4.a φA*
xralrple4.b φB
xralrple4.n φN
Assertion xralrple4 φABx+AB+xN

Proof

Step Hyp Ref Expression
1 xralrple4.a φA*
2 xralrple4.b φB
3 xralrple4.n φN
4 1 ad2antrr φABx+A*
5 2 rexrd φB*
6 5 ad2antrr φABx+B*
7 2 ad2antrr φABx+B
8 rpre x+x
9 8 adantl φx+x
10 3 nnnn0d φN0
11 10 adantr φx+N0
12 9 11 reexpcld φx+xN
13 12 adantlr φABx+xN
14 7 13 readdcld φABx+B+xN
15 14 rexrd φABx+B+xN*
16 simplr φABx+AB
17 rpge0 x+0x
18 17 adantl φx+0x
19 9 11 18 expge0d φx+0xN
20 2 adantr φx+B
21 20 12 addge01d φx+0xNBB+xN
22 19 21 mpbid φx+BB+xN
23 22 adantlr φABx+BB+xN
24 4 6 15 16 23 xrletrd φABx+AB+xN
25 24 ralrimiva φABx+AB+xN
26 25 ex φABx+AB+xN
27 simpr φy+y+
28 3 nnrpd φN+
29 28 rpreccld φ1N+
30 29 rpred φ1N
31 30 adantr φy+1N
32 27 31 rpcxpcld φy+y1N+
33 32 adantlr φx+AB+xNy+y1N+
34 simplr φx+AB+xNy+x+AB+xN
35 oveq1 x=y1NxN=y1NN
36 35 oveq2d x=y1NB+xN=B+y1NN
37 36 breq2d x=y1NAB+xNAB+y1NN
38 37 rspcva y1N+x+AB+xNAB+y1NN
39 33 34 38 syl2anc φx+AB+xNy+AB+y1NN
40 27 rpcnd φy+y
41 3 adantr φy+N
42 cxproot yNy1NN=y
43 40 41 42 syl2anc φy+y1NN=y
44 43 oveq2d φy+B+y1NN=B+y
45 44 adantlr φx+AB+xNy+B+y1NN=B+y
46 39 45 breqtrd φx+AB+xNy+AB+y
47 46 ralrimiva φx+AB+xNy+AB+y
48 xralrple A*BABy+AB+y
49 1 2 48 syl2anc φABy+AB+y
50 49 adantr φx+AB+xNABy+AB+y
51 47 50 mpbird φx+AB+xNAB
52 51 ex φx+AB+xNAB
53 26 52 impbid φABx+AB+xN