Metamath Proof Explorer


Theorem xralrple3

Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses xralrple3.a φA*
xralrple3.b φB
xralrple3.c φC
xralrple3.g φ0C
Assertion xralrple3 φABx+AB+Cx

Proof

Step Hyp Ref Expression
1 xralrple3.a φA*
2 xralrple3.b φB
3 xralrple3.c φC
4 xralrple3.g φ0C
5 1 ad2antrr φABx+A*
6 2 rexrd φB*
7 6 ad2antrr φABx+B*
8 2 ad2antrr φABx+B
9 3 ad2antrr φABx+C
10 rpre x+x
11 10 adantl φABx+x
12 9 11 remulcld φABx+Cx
13 8 12 readdcld φABx+B+Cx
14 13 rexrd φABx+B+Cx*
15 simplr φABx+AB
16 3 adantr φx+C
17 10 adantl φx+x
18 4 adantr φx+0C
19 rpge0 x+0x
20 19 adantl φx+0x
21 16 17 18 20 mulge0d φx+0Cx
22 2 adantr φx+B
23 16 17 remulcld φx+Cx
24 22 23 addge01d φx+0CxBB+Cx
25 21 24 mpbid φx+BB+Cx
26 25 adantlr φABx+BB+Cx
27 5 7 14 15 26 xrletrd φABx+AB+Cx
28 27 ralrimiva φABx+AB+Cx
29 28 ex φABx+AB+Cx
30 1rp 1+
31 oveq2 x=1Cx=C1
32 31 oveq2d x=1B+Cx=B+C1
33 32 breq2d x=1AB+CxAB+C1
34 33 rspcva 1+x+AB+CxAB+C1
35 30 34 mpan x+AB+CxAB+C1
36 35 ad2antlr φx+AB+CxC=0AB+C1
37 oveq1 C=0C1=01
38 0cn 0
39 38 mulridi 01=0
40 39 a1i C=001=0
41 37 40 eqtrd C=0C1=0
42 41 oveq2d C=0B+C1=B+0
43 42 adantl φC=0B+C1=B+0
44 2 recnd φB
45 44 adantr φC=0B
46 45 addridd φC=0B+0=B
47 43 46 eqtrd φC=0B+C1=B
48 47 adantlr φx+AB+CxC=0B+C1=B
49 36 48 breqtrd φx+AB+CxC=0AB
50 neqne ¬C=0C0
51 50 adantl φ¬C=0C0
52 3 adantr φC0C
53 0red φC00
54 4 adantr φC00C
55 simpr φC0C0
56 53 52 54 55 leneltd φC00<C
57 52 56 elrpd φC0C+
58 51 57 syldan φ¬C=0C+
59 58 adantlr φx+AB+Cx¬C=0C+
60 simpr C+y+y+
61 simpl C+y+C+
62 60 61 rpdivcld C+y+yC+
63 62 adantll x+AB+CxC+y+yC+
64 simpll x+AB+CxC+y+x+AB+Cx
65 oveq2 x=yCCx=CyC
66 65 oveq2d x=yCB+Cx=B+CyC
67 66 breq2d x=yCAB+CxAB+CyC
68 67 rspcva yC+x+AB+CxAB+CyC
69 63 64 68 syl2anc x+AB+CxC+y+AB+CyC
70 69 adantlll φx+AB+CxC+y+AB+CyC
71 60 rpcnd C+y+y
72 61 rpcnd C+y+C
73 61 rpne0d C+y+C0
74 71 72 73 divcan2d C+y+CyC=y
75 74 adantll φx+AB+CxC+y+CyC=y
76 75 oveq2d φx+AB+CxC+y+B+CyC=B+y
77 70 76 breqtrd φx+AB+CxC+y+AB+y
78 77 ralrimiva φx+AB+CxC+y+AB+y
79 xralrple A*BABy+AB+y
80 1 2 79 syl2anc φABy+AB+y
81 80 ad2antrr φx+AB+CxC+ABy+AB+y
82 78 81 mpbird φx+AB+CxC+AB
83 59 82 syldan φx+AB+Cx¬C=0AB
84 49 83 pm2.61dan φx+AB+CxAB
85 84 ex φx+AB+CxAB
86 29 85 impbid φABx+AB+Cx