Metamath Proof Explorer


Theorem xralrple3

Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses xralrple3.a φ A *
xralrple3.b φ B
xralrple3.c φ C
xralrple3.g φ 0 C
Assertion xralrple3 φ A B x + A B + C x

Proof

Step Hyp Ref Expression
1 xralrple3.a φ A *
2 xralrple3.b φ B
3 xralrple3.c φ C
4 xralrple3.g φ 0 C
5 1 ad2antrr φ A B x + A *
6 2 rexrd φ B *
7 6 ad2antrr φ A B x + B *
8 2 ad2antrr φ A B x + B
9 3 ad2antrr φ A B x + C
10 rpre x + x
11 10 adantl φ A B x + x
12 9 11 remulcld φ A B x + C x
13 8 12 readdcld φ A B x + B + C x
14 13 rexrd φ A B x + B + C x *
15 simplr φ A B x + A B
16 3 adantr φ x + C
17 10 adantl φ x + x
18 4 adantr φ x + 0 C
19 rpge0 x + 0 x
20 19 adantl φ x + 0 x
21 16 17 18 20 mulge0d φ x + 0 C x
22 2 adantr φ x + B
23 16 17 remulcld φ x + C x
24 22 23 addge01d φ x + 0 C x B B + C x
25 21 24 mpbid φ x + B B + C x
26 25 adantlr φ A B x + B B + C x
27 5 7 14 15 26 xrletrd φ A B x + A B + C x
28 27 ralrimiva φ A B x + A B + C x
29 28 ex φ A B x + A B + C x
30 1rp 1 +
31 oveq2 x = 1 C x = C 1
32 31 oveq2d x = 1 B + C x = B + C 1
33 32 breq2d x = 1 A B + C x A B + C 1
34 33 rspcva 1 + x + A B + C x A B + C 1
35 30 34 mpan x + A B + C x A B + C 1
36 35 ad2antlr φ x + A B + C x C = 0 A B + C 1
37 oveq1 C = 0 C 1 = 0 1
38 0cn 0
39 38 mulid1i 0 1 = 0
40 39 a1i C = 0 0 1 = 0
41 37 40 eqtrd C = 0 C 1 = 0
42 41 oveq2d C = 0 B + C 1 = B + 0
43 42 adantl φ C = 0 B + C 1 = B + 0
44 2 recnd φ B
45 44 adantr φ C = 0 B
46 45 addid1d φ C = 0 B + 0 = B
47 43 46 eqtrd φ C = 0 B + C 1 = B
48 47 adantlr φ x + A B + C x C = 0 B + C 1 = B
49 36 48 breqtrd φ x + A B + C x C = 0 A B
50 neqne ¬ C = 0 C 0
51 50 adantl φ ¬ C = 0 C 0
52 3 adantr φ C 0 C
53 0red φ C 0 0
54 4 adantr φ C 0 0 C
55 simpr φ C 0 C 0
56 53 52 54 55 leneltd φ C 0 0 < C
57 52 56 elrpd φ C 0 C +
58 51 57 syldan φ ¬ C = 0 C +
59 58 adantlr φ x + A B + C x ¬ C = 0 C +
60 simpr C + y + y +
61 simpl C + y + C +
62 60 61 rpdivcld C + y + y C +
63 62 adantll x + A B + C x C + y + y C +
64 simpll x + A B + C x C + y + x + A B + C x
65 oveq2 x = y C C x = C y C
66 65 oveq2d x = y C B + C x = B + C y C
67 66 breq2d x = y C A B + C x A B + C y C
68 67 rspcva y C + x + A B + C x A B + C y C
69 63 64 68 syl2anc x + A B + C x C + y + A B + C y C
70 69 adantlll φ x + A B + C x C + y + A B + C y C
71 60 rpcnd C + y + y
72 61 rpcnd C + y + C
73 61 rpne0d C + y + C 0
74 71 72 73 divcan2d C + y + C y C = y
75 74 adantll φ x + A B + C x C + y + C y C = y
76 75 oveq2d φ x + A B + C x C + y + B + C y C = B + y
77 70 76 breqtrd φ x + A B + C x C + y + A B + y
78 77 ralrimiva φ x + A B + C x C + y + A B + y
79 xralrple A * B A B y + A B + y
80 1 2 79 syl2anc φ A B y + A B + y
81 80 ad2antrr φ x + A B + C x C + A B y + A B + y
82 78 81 mpbird φ x + A B + C x C + A B
83 59 82 syldan φ x + A B + C x ¬ C = 0 A B
84 49 83 pm2.61dan φ x + A B + C x A B
85 84 ex φ x + A B + C x A B
86 29 85 impbid φ A B x + A B + C x